

END PRODUCT QUALITY: BAKING TRIALS ON WHEAT FLOUR AND MAIZE MEAL PORRIDGE

Filip Van Bockstaele, 16-05-2017, QAQC training on flour fortification, Lusaka, Zambia

FORTIFICATION: CHALLENGES

Are products accepted? Are products consumed? => Continuous **monitoring** system needed!

FORTIFICATION: PREREQUISITE

- Fortification is desired to not
 - Impact the production process of the food
 - Change the sensory properties of the produced fortified foods

FORTIFICATION PREMIX

- Low quantities (eg 300 ppm -> 0,3 g per kg) particle size, different types of components at different concentrations, colour

thoxi

PROBLEM STATEMENT

Factors that may limit the amount of fortificants that can be added to a single food vehicle

Nutrient	Technological/sensory	Safety	Cost
Vitamin A	Х	XXX	XXXa
Vitamin D	_	Х	Х
Vitamin E	_	Х	XXX
Vitamin C	XX	Х	XXXp
Thiamine (vitamin B1)	_	_	_
Riboflavin (vitamin B2)	XX	_	_
Niacin (vitamin B ₃)	_	XXXc	Х
Vitamin B ₆	_	Х	_
Folic acid	_	XXX ^d	_
Vitamin B ₁₂		_	Х
Iron ^e	XXX	XX	Х
Zinc	XX	XXX	Х
Calcium	Х	XX	XXX ^f
Selenium	_	Х	Х
lodine	Х	XXX	_

-, no constraint; X, a minor constraint; XX, moderate constraint; XXX, major constraint.

- a If an oil-based form is used to fortify oils or fats, costs can be reduced.
- ^b Cost constraints are mainly a consequence of losses during manufacturing, storage, distribution and cooking which mean that a considerable overage is required.
- ° Much less of a concern if niacinamide, as opposed to nicotinic acid, is used as the fortificant.
- ^d The risk of adverse effects is minimized by the co-addition of vitamin B₁₂.
- Refers to the more bioavailable forms.
- Cost constraints are mainly a consequence of the need to add such large amounts.

Guidelines on food fortification with micronutrients

Edited by Lindsay Allen, Bruno de Benoist Omar Dary and Richard Hurrell

World Health Organization Food and Agricultural of the United Nations

FE-SOURCES

TABLE 5.1

Guidelines on food fortification with micronutrients Edited by Lindaw Allen, Bruno de Benoist, Omm Dav and Richard Hurrell

World Health Organization Food and Agricultural Organization of the United Nations

Key characteristics of iron comp	unds commonly used for food fortification
purpose: solubility, bioavailability	and cost

Compound	Iron content (%)	Relative bioavailability ^a	Relative cost ^b (per mg iron)
Water soluble			
Ferrous sulfate. 7H ₂ 0	20	100	1.0
Ferrous sulfate, dried	33	100	1.0
Ferrous gluconate	12	89	6.7
Ferrous lactate	19	67	7.5
Ferrous bisglycinate	20	>100°	17.6
Ferric ammonium citrate	17	51	4.4
Sodium iron EDTA	13	>100°	16.7
Poorly water soluble, soluble	in dilute acid		
Ferrous fumarate	33	100	2.2
Ferrous succinate	33	92	9.7
Ferric saccharate	10	74	8.1
Water insoluble, poorly solubl	le in dilute acid		
Ferric orthophosphate	29	25–32	4.0
Ferric pyrophosphate	25	21–74	4.7
Elemental iron	-	_	-
H-reduced	96	13–148 ^d	0.5
Atomized	96	(24)	0.4
CO-reduced	97	(12–32)	<1.0
Electrolytic	97	75	0.8
Carbonyl	99	5–20	2.2
Encapsulated forms			
Ferrous sulfate	16	100	10.8
Ferrous fumarate	16	100	17.4

Best option for cereal flours with high turnover, typically use within 1 month for humid, warm climate and 3 months in dry, cold climate

High bio-availibility,

 especially in high phytate flours

Ferrous sulphate can

cause rancidity
depending on fat content,
climate and type of flour

More stable, physical separation from food

components and thus slow down sensory changes

Fortification of wheat flour and maize meal with different iron compounds: Results of a series of baking trials

Philip Randall, Quentin Johnson, and Anna Verster

Abstract

Under publication...

Background. Wheat and maize flour fortification is a preventive food-based approach to improve the micronutrient status of populations. In 2009, the World Health Organization (WHO) released recommendations for such fortification, with guidelines on the addition levels for iron, folic acid, vitamin B_{1,2}, vitamin A, and zinc at various levels of average daily consumption. Iron is the

standard, and under academic scrutiny no differences were reported. Side-by-side comparison by the milling industry did indicate some slight differences, mainly with respect to color, although these differences did not correlate with any particular iron compound.

Conclusions. The levels of iron compounds used, in accordance with the WHO guidelines, do not lead to changes in the baking and cooking properties of the wheat flour and maize meal. Respondents trained to

Impact of Fe and Zn fortification on the properties of maize meal porridge (2017)

WHEAT FLOUR / BREAD

BREADMAKING

wheat flour, water, yeast, salt bread improvers, other flours

IMPACT ON MIXING BEHAVIOUR

Farinograph mixing profile

BREADS WITH NAFE-EDTA

30 ppm

60 ppm

No difference in volume, texture or crumb colour

90 ppm

FORTIFIED BREADS FULL PREMIX

blank	East-	
	African	A
	standard	st
	fumarate	

No differences in texture and crumb colour

South-African tandard

EDTA

Source: Philip Randall

SAGL

Premix

@75-149 g/day consumption

WHO guidelines

Control 2 – Sulphate – Fumerate – EDTA - Control 0 ppm – 60 ppm – 60 ppm – 40 ppm - 0 ppm

Control 2 – Sulphate – Fumerate – EDTA - Control 0 ppm – 60 ppm – 60 ppm – 40 ppm - 0 ppm

BREAD SCORE (BAKHRESA MILLS, TANZANIA)

(Characteristic	Perfect score	Control 1	Ferrous fumarate	Ferrous sulfate	NaFeEDTA	
(Driginal sample						
	Bread volume	30	27	27	28	28	
	Appearance	20	18	18	18	18	
	Texture	25	24	24	24	24	
	Crumb color	14	14	14	14	14	
	Crumb grain	7	5	5	5	5	
	Oven spring	4	3	3	2	3	
]	Fotal	100	91	91	91	92	
] F	Fotal Retention samples	100	91	91	91	92	
J	Fotal Retention samples Bread volume	100 30	91 27	91 27	91 27	92 23	
J	Fotal Retention samples Bread volume Appearance	100 30 20	91 27 18	91 27 16	91 27 12	92 23 17	
J	Fotal Retention samples Bread volume Appearance Texture	100 30 20 25	91 27 18 24	91 27 16 24	91 27 12 24	92 23 17 23	
J	Fotal Retention samples Bread volume Appearance Texture Crumb color	100 30 20 25 14	91 27 18 24 13	91 27 16 24 12	91 27 12 24 12	92 23 17 23 12	
J	Fotal Retention samples Bread volume Appearance Texture Crumb color Crumb grain	100 30 20 25 14 7	91 27 18 24 13 6	91 27 16 24 12 5	91 27 12 24 12 5	92 23 17 23 12 5	
J	Total Retention samples Bread volume Appearance Texture Crumb color Crumb grain Oven spring	100 30 20 25 14 7 4	91 27 18 24 13 6 3	91 27 16 24 12 5 3	91 27 12 24 12 5 3	92 23 17 23 12 5 2	

TABLE 5. Bakhresa Mills, Tanzania: Results for bread^a

NaFeEDTA, sodium iron ethylenediaminetetraacetate

a. Minimum acceptable score > 75.

BREAD ACCEPTABILITY

TABLE 7. Kenyatta University, Kenya: Acceptability of bread^a

		Ferro
Question	Control	fumara
Original samples		
Is this product generally ACCEPTABLE ?	1.1 (0.3)	1.1 (0.
Would you BUY this product if it was commercially available ?	1.1 (0.3)	1.1 (0.
Would you BUY the product knowing it contained health benefits?	1.1 (0.3)	1.1 (0.
Retention samples		
Is this product generally ACCEPTABLE?	1.1 (0.3)	1.2 (0.
Would you BUY this product if it was commercially available?	1.1 (0.2)	1.2 (0.
Would you BUY this product knowing it contained health benefits?	1.0 (0.0)	1.1 (0.

NaFeEDTA, sodium iron ethylenediaminetetraacetate. Questions were in English.

a. Numbers in parentheses are 1 SD for n = 20 (original samples) and n = 19 (retention samples).

15 ate	Ferrous sulfate	NaFeEDTA
3) 3)	1.1 (0.3) 1.1 (0.3)	1.1 (0.3) 1.1 (0.4)
3)	1.1 (0.3)	1.0 (0.0)
4) 4)	1.2 (0.4) 1.3 (0.5)	1.3 (0.5) 1.4 (0.5)
3)	1.1 (0.3)	1.1 (0.2)

WHEAT FLOUR / CHAPPATI

TANZANIAN WHEAT FLOUR - MILL

EDTA - Control

Fumerate - Control

Sulphate - Control

Slight differences in colour but not related to a particular iron source Chapatti quality = normal

MAIZE MEAL / PORRIDGE

PORRIDGE PRODUCTION

Stirring Cooking time

End product

In my country -

NAMIBIA

ZAMBIA KWANDA BURUNSI

TOGO BURKINA MALAWI ZIMBABWE

Maize porridge is called OSHITHIMA NSHIMA UMUTSIMA UMUTSIMA AKOUMÉ Tô NSIMA Bota

Sasco.

Thick maize porridge is Called NSIMA LIMBABWE SADZA TANZANIA DISTHWALD South Africa PAP 2 Putu 3 Liphalishi Mggli/Sing

PART1: IMPACT OF IRON AND ZINC FORTIFICATION ON PORRIDGE COLOUR

PART 1: SAMPLES

- 120% overage
- Samples stored at 25°C

PART 1: TEST PROCEDURE

Evaluation of maize flour ≻ cooking trial (duplicate)

- Photo
- Colorimeter (2*3 cups)

(D65/10°/SCE-mode)

a*-128

$\Delta Eab* = \left(\Delta L^2 + \Delta a^2 + \Delta b^2\right)^{1/2}$

PART 1: RESULTS SUPER MAIZE MEAL

PART 1: RESULTS SPECIAL MAIZE MEAL

Day 1

PART 2: IMPACT OF WATER ON PORRIDGE COLOUR

PART 2: RESULTS

Destilled water Tap water Blank Iron EDTA

PART 2: RESULTS

GHENT

PART 3: IMPACT OF TYPE OF COOKING POT ON PORRIDGE COLOUR

Special maize meal **Full premixes** Storage at 25 and 35°C 10 weeks storage **Tap water** Two types of

cooking pot

PART 4: DO IRON SOURCES ALTER THE SENSORY PERCEPTION OF MAIZE MEAL PORRIDGE?

UGALI SCORE: KENYATTA UNIVERSITY, KENYA

Characteristic	Control	Ferrous fumarate	NaFeEDTA
Original samples			
Appearance	7.5 (0.7)	7.2 (0.8)	7.4 (0.9)
Color	7.8 (0.6)	7.2 (0.8)	7.6 (0.9)
Odor	7.1 (1.0)	7.0 (1.2)	7.2 (1.2)
Texture	7.4 (0.9)	7.1 (1.5)	6.9 (1.3)
Taste	7.1 (1.2)	6.7 (1.2)	7.3 (1.0)
Overall	7.5 0.7)	6.7 (1.2)	7.2 (1.0)
Retention samples			
Appearance	7.0 (1.3)	6.8 (1.3)	6.8 (1.3)
Color	7.2 (1.3)	6.7 (1.3)	6.6 (1.5)
Odor	6.7 (1.6)	6.3 (2.2)	6.5 (2.0)
Texture	6.7 (1.8)	6.9 (1.9)	6.9 (1.7)
Taste	6.7 (1.7)	6.8 (1.7)	6.3 (2.0)
Overall	6.4 (1.6)	6.5 (1.9)	6.5 (1.4)

UGALI ACCEPTABILITY: KENYATTA UNIVERSITY, KENYA

Question	Control	Ferrous fumarate	NaFeEDTA
Original samples			
Is this product generally ACCEPTABLE?	1.2 (0.4)	1.1 (0.2)	1.1 (0.2)
Would you BUY this product if it was commercially available?	1.1 (0.3)	1.1 (0.2)	1.1 (0.3)
Would you BUY this product knowing it contained health benefits?	1.1 (0.3)	1.0 (0.0)	1.1 (0.2)
Retention samples			
Is this product generally ACCEPTABLE?	1.2 (0.4)	1.2 (0.4)	1.2 (0.4)
Would you BUY this product if it was commercially available?	1.2 (0.4)	1.2 (0.4)	1.3 (0.5)
Would you BUY this product knowing it contained health benefits?	1.1 (0.3)	1.2 (0.4)	1.1 (0.3)

SENSORY TRIAL AT MAIZE FORTIFICATION MEETING, DAR ES SALAAM, TANZANIA

- Q1: Do any of these samples differ? If yes, which one?
- Q2: Which one did you like most?
- Q3: Why?

Around 1/3 of the participants indicated no difference among the samples was present. Of the other 2/3, preference to fortified/unfortified was 50:50

QUIZ: WHICH ONE IS FORTIFIED?

WHAT TO DO WHEN STARTING WITH FORTIFYING?

- Before starting up with fortifying -> check impact on product quality
- Make sure premix specifications (types, conc, quality...) are set right and clear from the beginning
- Use slightly higher concentrations (overdosage taking into account mill variation)
- Use in-land procedures and products
- Act smart: do we observe a difference? -> Is this difference acceptable

