Meet Akzo Nobel

Origins in 1646; More than 350 years of history and cutting-edge innovation

Leading global paints and coatings company and a major producer of specialty chemicals

Consistently ranked as one of the leaders in the area of sustainability; No. 2 on the Dow Jones Sustainability Index

Passionate about innovation, with 4,000 scientists at over 160 laboratories

Committed to our customers and society through our brands and hands-on community projects

Goods

Meet Akzo Nobel

AkzoNobel 2016

AkzoNobel | 2018 9

Trusted portfolio of global brands

Meet Chelates and Micronutrients AkzoNobel

We have a truly global presence producing well established brands

AkzoNobel

5

Where are Chelates used

Agriculture **Building & Construction** Cleaning & Detergents Feed & Food additives Gas sweetening Metal plating & Electronics Oil industry Personal care Pharma Photography Polymer production Printing inks Pulp & Paper Textiles

6

The most bio-available iron against anemia

What is a metal chelate? Metal ion + Chelating agent Metal Chelate Ferrazone® This Iron Works

Food fortification

The most efficient way of preventing and treating iron deficiency anemia is through food fortification

The main challenge is avoiding undesirable color and flavor changes of the fortified food

Also iron fortification should not cause metallic taste or teeth staining

And most important: the iron should be effective!

WHO recommendation:

Nutrient	Flour Extractio rate	ⁿ Compound	Level of nutrient to be added in parts per million (ppm) by estimated average per capita wheat flour availability (g/day) ^a			
			<75 ^b g/day	75-149 g/day	150-300 g/day	>300 g/day
Iron	Low	NaFeEDTA	40	40	20	15
		Ferrous Sulfate	60	60	30	20
		Ferrous Fumarate	60	60	30	20
		Electrolytic Iron	NR°	NR°	60	40
	High	NaFeEDTA	40	40	20	15

Iron sources

Relative bioavailibility of iron compounds

Water soluble	Fe (%)	RBV in man				
FeNaEDTA ***)	13	200-400				
Ferrous sulphate.7H20	20	100				
Ferrous gluconate	12	89				
Soluble in dilute acid	Fe (%)	RBV in man				
Ferrous fumarate	33	100				
Ferrous succinate	35	92				
Ferrous saccharate	10	74				
Waterinsoluble	Fe (%)	RBV in man				
Ferric pyrophosphate	25	21~75				
Ferric orthophosphate	28	25~32				
Elemental iron:						
Electrolytic iron	98	5~100				
Carbonyl iron	98	5~20				
Reduced	97	13~148				
Source: R. Hurrell, 1999, Mineral Fortification of Foods						

***) Lavrisse et al. (1977), Viteri et al. (1978), el Guindi et al. (1988), MacPhail et al (1992), Hurrell et al (2000), Huo et al. (2002) Why FeNaEDTA for food/four fortification:

- Completely water soluble
- Highly effective, even in presence of phytate
- No teeth staining
- Virtually inert to almost all other food ingredients
- No metallic taste
- No digestive effects
- High bioavailability

Suitable application area's

Wheat and maize flour

Derived products: bread, biscuits, pasta, instant noodles and cereals

Wheat, maize and rice: 3 main staple foods globally

Condiments

Soy sauce, fish sauce, bouillon cubes and salt

Drinks

Powdered beverages, milk and ready-to-serve lemonades (Cola, beer, sport drinks)

Supplements

Ferrazone can be used in iron containing food supplements under various forms (like syrups, sprays, tablets and powder sachets

Products containing Ferrazone

Our commitment to society; human cities

"As a global company, we fully understand our role and responsibilities when it comes to society and contributing to the communities in which we operate. All our community activities are guided by our Human Cities initiative"

Our commitment to society; human cities Supporting the fight against malnutrition

Partnerships

AIM : Amsterdam Initiative against Malnutrition; Quality Improvement Network project

(GAIN, DSM, AkzoNobel, Bless Agrifood Laboratory, Intertek Food Services)

Longstanding relationship/sponsorship

Smarter Futures: promotion of flour and maize fortification in Africa

Cooperation

BioAnalyt: field testing of micronutrients, AN validated the Fe-EDTA method in flour; currently worked on improving the accelaration of the iron Check field test

Method: Colorimetric reaction of iron with bathophenanthroline, extraction of the red complex into the upper organic phase and detection with 525 nm.

Measurement range: 1.5 – 12.0 mg/L

Coefficient of variation in liquid sample: 7%

Pearson correlation when compared to AAS: R²=0.93

iCheck Iron portable single wavelength photometer, pre-calibrated for quantitative measurement of iron.

Reference:

Rapid quantification of iron content in fish sauce and soy sauce: A promising tool for monitoring fortification programs. A. Laillou, et al. Food and Nutrition Bulletin, vol. 34, no. 2 (supplement) , 2013

iCheck Iron measures following types of iron:

- Iron EDTA
- Iron sulfate
- Iron fumarate
- Intrinsic iron
- NOT: Elemental or electrolytic iron

iCheck Iron **Measures** iron in wide range premixes and foods

0

iCheck Iron Science behind iron determination.

iCheck Iron

Sample preparation including precipitation or filtration of flour suspension allows for differentiation of NaFeEDTA from ferrous sulfate, ferrous fumarate, elemental iron and other iron compounds with poor iron solubility in water

0

- BioAnalyt has commercialized the new Additive from January 2017.
- iCheck Iron reagent vials are now supplied with new Additive that enables iron results with NaFeEDTA after 10 minutes.
- All other forms of iron ferrous fumarate, ferrous sulfate and intrinsic iron, require 60 min.

iCheck Iron

performance was drastically improved by AkzoNobel who discovered faster method for NaFeEDTA. With new additive NaFeEDTA can now be measured after only 10 minutes.

For Technical Support visit our:

www.iCheckAcademy.org

or email:

support@bioanalyt.com

Contact for orders:

E-mail: <u>contact@bioanalyt.com</u> <u>www.bioanalyt.com</u> Follow us on: in f

Thank you!

