Technology for Rice Fortification

Finding practical solutions

Scott J. Montgomery
Director, Food Fortification Initiative (FFI)
sjmontgom@gmail.com

Three most consumed grains

Globally available for human consumption in 2011:1

450 371 122

Million tons of wheat Million tons of rice

Million tons of maize

- Wheat flour fortification
 - 80 countries with mandatory flour fortification²
 - 31% of world's wheat flour is fortified²
 - Continue focused efforts on wheat and expand to maize
- Rice opportunity
 - Bring rice fortification to scale

¹ Food Balance Sheet World Total for 2011, the latest year with data. Food and Agriculture Organization of the United Nations http://faostat3.fao.org/faostat-gateway/go/to/browse/FB/CC/E

² Food Fortification Initiative database, August 2014

Rice availability and fortification legislation

75 or more grams available per person per day

Less than 75 grams available per person per day

Mandatory fortification legislation * 5 countries

No availability or legislation data

^{*} Legislation has effect of mandating grain fortification with at least iron or folic acid; does not reflect how much grain is available. Grain availability data from the Food and Agriculture Organization (2009).

Legislation status from the Food Fortification Initiative (www.FFInetwork.org) June 2014

Several requirements for successful rice fortification

Storage

Preparation

Acceptability

Absorption

Impacted by: choice of fortificant forms, choice of fortificant mixture, fortification technology

Stability during storage

Limited losses during preparation: washing, cooking, discarding excess water

Acceptability to consumer: appearance (shape and colour), taste

Availability for absorption by the body

Efficacy

Effectiveness

What about rice flour?

- Similar to wheat flour or maize flour fortification
- Simple addition of fortification mix to milled and ground rice
- Used for noodles, buns and dumplings
- Relatively small consumption compared to rice grains

Potential challenge:

 Phytate content impacts iron and potentially zinc bioavailability; this can be managed

Technological challenges for fortifying rice grains

- Rice is commonly consumed as whole grains; fortifying grains is more complicated than fortifying flour (not a fine powder mixed with fine powder)
- Rice is usually washed before cooking
- Different cooking procedures
 - soaking
 - various amounts of water
 - various cooking times

Available technologies

- Parboiling
- Dusting
- Coating
- Extrusion
 - Cold
 - Warm
 - Hot

Saman Rice Mill in Uruguay. Photo by Angela Rowell.

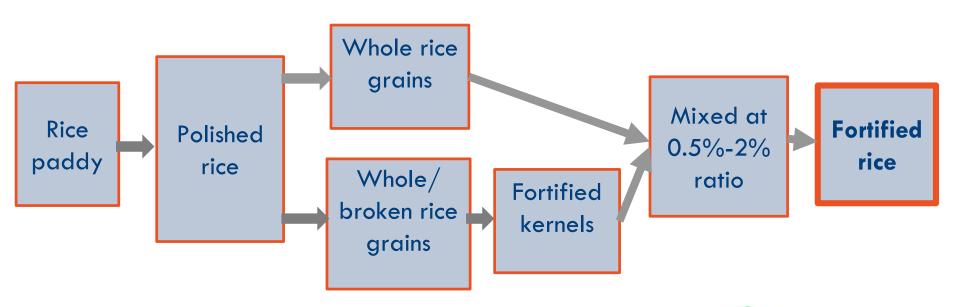
Parboiling - indirect fortification

- Treating with hot water and/or steam enhances intrinsic nutrients
- Additional nutrients not usually included
- Efforts to get external nutrients into the grain (iron, zinc, folic acid) have been studied

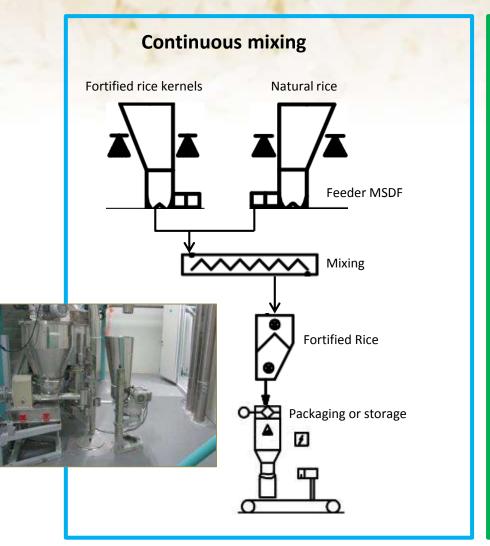
Dusting

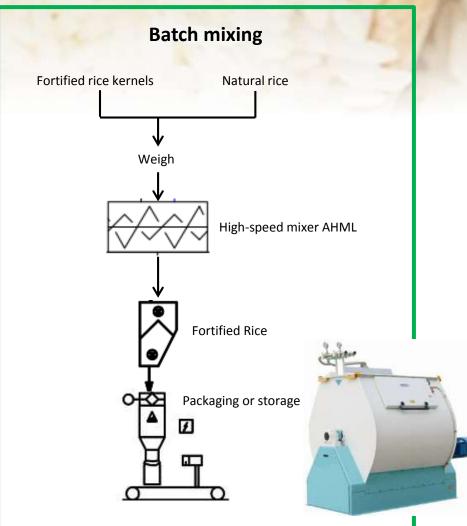
- All rice grains dusted with a fortificant mix
- Limited nutrient protection
- Sedimentation risk
- Frequently done in USA
- Due to nutrient loss, not suitable in countries where rice is washed or where excess cooking water is discarded

Dusted rice with warning and cooking instructions

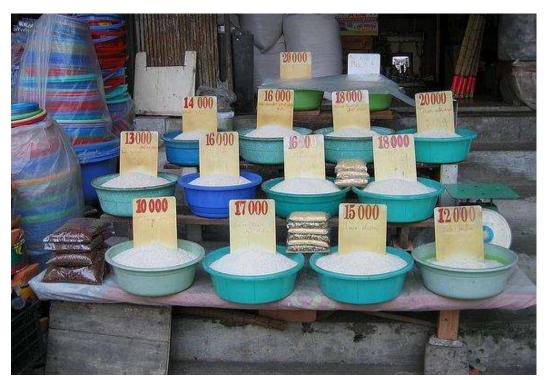

Cooking Directions - On the Stove

Bring 2 cups of water to a boil in a 2-quart heavy saucepan. Add margarine and salt, if desired. Stir in 1-cup rice. Cover, reduce heat and simmer for 20 minutes or until all water is absorbed.


Overview: creating fortified kernels to blend with non-fortified rice grains


Applies to coating and extrusion

How to blend fortified kernels


Key considerations

- Seek scientific evidence of nutritional effectiveness in light of rice preparation and utilization.
- Ensure that fortified kernels closely resemble nonfortified rice in size, shape, color, and density in both dry and cooked state. They should be indistinguishable to the average consumer.
- Require no changes in traditional rice preparation or cooking.
- Choose a cost-effective option.

Challenge of homogeneity

 Fortified kernels must match non-fortified rice in shape, size and color

Rice varieties for sale at a shop in Viet Nam. Photo by Brian Waldron.

http://www.riceauthority.com/rice-varieties/

Rice conformity

Bangladesh woman preparing rice. World Fish photo.

NutriRice from Bühler Group.

Coating

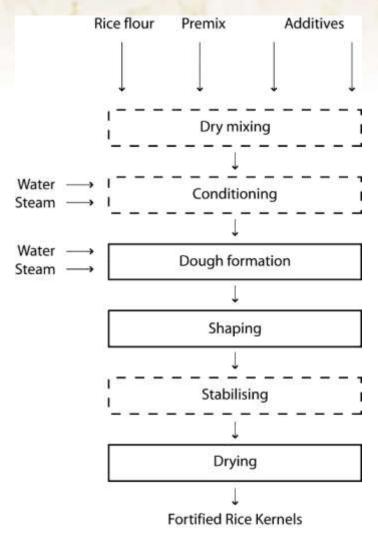
- Nutrients are added in coating layer on the rice surface
 - Several coating technologies;
 different performance of FK
 - Some rinse-resistant; some not
- Native rice variety can be coated
- Either broken or whole grains can be coated
- Nutrients disperse in rice upon cooking; allows higher concentration of nutrients in FK

Examples of fortified rice made by blending coated kernels with non-fortified rice. Wright Group photo.

Extrusion

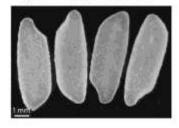
- 1. Broken rice grains can be used as starting material
- 2. Micronutrients are equally distributed inside the fortified kernel
- 3. Only few particles are on the surface, thus reducing exposure to environment and nutrient degradation
- 4. Color impact from micronutrients depends on nutrient formulation

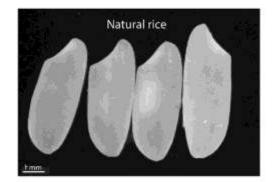
Extrusion technologies


Temperature influences appearance and cooking characteristics of final fortified kernels

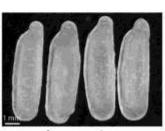
- Cold extrusion uses a pasta press at 30 50°C
- Warm extrusion includes a preconditioner and uses a pasta press or extruder (single or double) at 60 – 80°C
- Hot extrusion includes a preconditioner and uses a extruder (single or double) at $80 110^{\circ}$ C

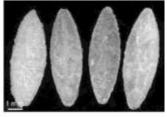
Basic extrusion steps

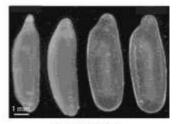



Appearance of fortified kernels

warm extrusion, gluten-free pasta process




cold extrusion


hot extrusion low SME

hot extrusion medium SME

warm extrusion, pre-conditioner / pasta press

hot extrusion, high SME

From: Steiger et al.
Fortification of rice: technologies & nutrients. NY Anals 2014

Which MN to add to rice?

As for maize and wheat flours:

Iron

Folic Acid

Vitamin B12

Vitamin A

Zinc

For rice, also add MN lost through polishing:

Thiamin

Vitamin B6

Niacin

Commonly added in large scale programs

De Pee S. Annals NY

Acad Sci 2014

Many others also possible, such as:

- Vitamin E
- Vitamin D
- Selenium
- Lysine

Possible, but:

- Riboflavin
- Beta-carotene
- Calcium
- Vitamin C
- DHA
- Iodine

Iron compounds with >80% bioavailability

Iron compound	Relative bioavailability A
Ferrous sulfate (7H ₂ O)	100
Ferrous sulfate, dried	100
Ferrous gluconate	89
Ferrous bisglycinate	>100 B
Sodium iron EDTA	>100 B
Ferrous fumarate	100
Ferrous succinate	92

^A Relative to hydrated ferrous sulfate (FeSO4.7H2O), in adult humans

^B Absorption is two-three times better than that from ferrous sulfate if the phytate content of food vehicle is high

Color impact by iron type

Bühler photo.

Iron commonly used in rice fortification

Iron compound	Relative bioavailability
Ferric orthophosphate	25-32
Ferric pyrophosphate	21-74

Other minerals

	Compounds Used
Zinc	Zinc Oxide (Zinc sulfate)
Selenium	Sodium selenite
Calcium	Calcium carbonate

Vitamins

Water Soluble	Compound used
Vitamin B1	Thiamine mononitrate
Vitamin B6	Pyridoxine hydrochloride
Vitamin B9	Folic acid
Vitamin B12	B12 1% sd
Vitamin B3 (niacin)	Niacinamide
Vitamin B2	
Fat Soluble	
Vitamin A	A palmitate stabilized with BHT
Vitamin D	Vitamin D stabilized
Vitamin E	Tocopherol acetate
Other	
Beta Carotene	BC 10%WS
Vitamin C	Sodium ascorbate /Ascorbic acid

Nutrient retention

Study examined retention of 5 nutrients in fortified rice made via hot extrusion, cold extrusion, and coating, with five different preparation and cooking methods.

- Similar retention for all fortification technologies
- Overall retention of iron, zinc, vitamin B12 and folic acid was between 75-100%
- Vitamin A retention significantly affected

Conclusion

- Though rice is the world's second most commonly consumed cereal grain, it is rarely fortified.
- Dusting is not an appropriate rice fortification technology where rice is washed/cooked excess water.
- Coating and extrusion are viable rice fortification technologies.
- Clear requirements for fortified rice (sensory, performance and nutrient level) need to be set and fortified kernel suppliers vetted.
- The technology used and nutrients included must yield fortified rice that is acceptable to the target population and meets vitamin and mineral specifications.

