

Why Countries Will Benefit

The Tanzania Example

The Copenhagen Consensus 2008

Eight world-renowned economists

Jagdish Bhagwati, François Bourgignon, Finn Kydland*, Robert Mundell*, Douglass North*, Thomas Schelling*, Vernon L. Smith*, Nancy Stokey (* Denotes Nobel prize winner)

The Copenhagen Consensus 2008 Looked at 10 Development Challenges

...Ranked Fortification as 3rd Greatest Opportunity

Copenhagen Consensus 2008

The outcome of Copenhagen Consensus in May 2008 is:

The ranked list of solutions (download the results as pdf-file including comments)

	Solution	Challenge	
1	Micronutrient supplements for children (vitamin A and zinc)	Malnutrition	
2	The Doha development agenda	Trade	
3	Micronutrient fortification (iron and salt iodization)	Malnutrition	
	F	D:	

The 2008

The prov

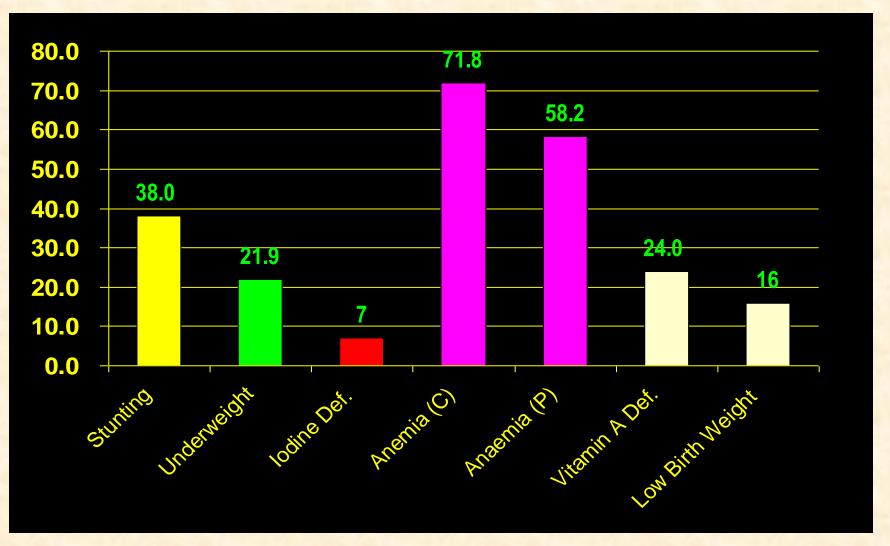
follo half Hen infor

Solu Bigg

Source: www.copenhagenconsensus.com

Malnutrition

Why?


Fortification makes economic sense... Africa example: Folic acid fortification

- South Africa began fortification 2003
 - 1.5mg/Kg wheat flour, 2.21mg/Kg maize meal);
 - 22 large millers account for 85% maize, 17
 mills 95% wheat
- Neural Tube Defects fell 30.5%
- Benefit:cost 46:1 (hospital cost saved)

Sayed et al,

Tanzania – Nutrition Related Indicators

Cost Benefit Analysis Steps followed (1)

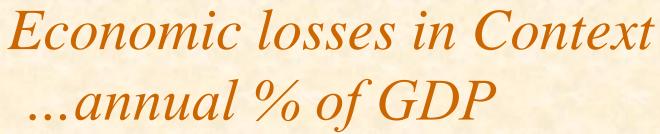
- Identify the target populations
- Determine economic losses due to micronutrient deficiencies for each group: Iron, Folic Acid, vitamin A
- Summarize the losses
- Estimate the potential reduction in deficiency due to food fortification

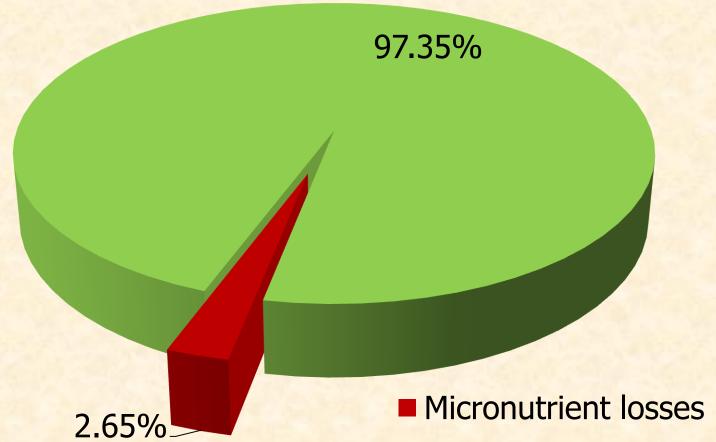
Cost Benefit Analysis Steps followed (2)

- Select vehicles for fortification
 Wheat flour, Maize flour, Vegetable oil
- Determine the costs of food fortification for each food vehicle
- Calculate the financial benefit of the food fortification intervention by estimating the losses prevented and subtracting the food fortification costs

Losses due to micronutrient deficiencies

- Firon Deficiency Anemia
 - Children < 6 years (death)
 - Perinatal and women in childbirth (death)
 - Adults (lost productivity)
- Folic Acid Deficiency
 - Neural Tube Birth Defects
- Vitamin A deficiency (deaths < 5 years)</p>


The Human Costs


Cause of death	Annual Number	Micronutrient Deficiency
Perinatal due to anemia	18,683	Iron
Maternal mortality due to anemia	1,602	Iron
Neural Tube Birth Defects	3,308	Folic Acid
Children < 5years lack of Vitamin A	5,190	Vitamin A
Total	28,783	

Summary of economic losses

	Estimated		Projected %	Economic Losses
Group	Losses	% of Total	Reduction	Averted (benefits)
Anemia				
Perinatal	\$116,324,201	22%	20%	\$23,264,840
Children	\$169,163,266	33%	20%	\$33,832,653
Adults Productivity loss	\$167,125,419	32%	30%	\$50,137,626
Adults Maternal mortality	\$4,588,867	1%	30%	\$1,376,660
Total Anemia	\$457,201,753	88%		\$108,611,779
Neural Tube Defects				
Deaths	\$20,596,288	4.0%	30%	\$6,178,887
Survivor Lost Productivity	\$6,621,570	1.3%	30%	\$1,986,471
Care & Welfare	\$1,205,300	0.2%	30%	\$361,590
Total NTD	\$28,423,158	5.5%		\$8,526,947
Sub Total	\$485,624,912	94%		\$117,138,727
Vitamin A deficiency	\$32,314,008	6%	30%	\$9,694,202
TOTAL	\$517,938,919	100%		\$126,832,929

Food Fortification Costs

- Food vehicles:
 - Wheat flour
 - Maize flour
 - Vegetable oil
- Types of Costs
 - Mill Fortification
 - Legal, Regulatory & Food Control
 - Social Marketing
 - Management & Monitoring

Food Fortification Costs Included

Component	Start-up Costs	Recurring Costs		
Mill	- Equipment	- Premix Cost to Distribution Point		
enrichment	- Installation and training	- Domestic Storage/Distribution		
		- Taxes & Duties		
		- Processing & Certification Costs		
		- Mill Process Labor		
		- Equipment Maintenance		
		- QA: Spot Tests Reagents & labor		
		- Incremental Packaging Cost		
		- Management Overhead		
		- Miller's Margin		
Legal,	- Sampling, Testing and	- Inspector Salaries		
Regulatory	Enforcement Protocols	- Sampling Visit Transport		
and Food	- Inspector Training	- Test Materials and reagents		
Control	- Technician Training	- Shipping to Lab		
	- Lab Equipment/Renov.	- Management		
Other	- Social Marketing	- Monitoring and Evaluation		
	- Management	- Program Management		

Food Fortification Costs (e.g., maize)

Component	Start-up Costs	Recurring Costs	10 year \$ million	Amortized annual	Cost per MT flour
Mill enrichment	\$18,000	\$9,143,000	\$91,451,000	\$9,145,000	\$4.35
Legal, Regulatory and Food Control	\$89,000	\$ 20,000	\$ 291,000	\$ 29,000	\$0.01
Social Marketing	\$372,000		\$ 372,000	\$ 37,000	\$0.02
Monitoring & program management	\$240,000	\$ 20,000	\$ 440,000	\$ 44,000	\$0.02
Total	\$718,000	\$9,183,000	\$92,553,000	\$9,255,000	\$4.41

Food Fortification Costs (overall annual average costs)

Food vehicle	Annual costs: US\$
Wheat flour	3.7 million
Maize flour	9.3 million
Vegetable oil	0.9 million
TOTAL	13.8 million

Coverage and consumption levels

Food vehicle	Estimated Population Coverage	Estimated Daily Consumption
Wheat flour	14 million, mostly adults	110 gm
Maize flour	23 million	300 gm
Vegetable oil	30 million	30 gm

Who pays? Typical Distribution

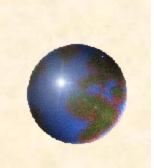
Expense item	Government/ Development Partners*	Consumer/ Industry
Food enrichment Vitamin & mineral premixes	Government – Favorable tax treatment	Industry – passed along to consumer
Regulations & food control		Industry – own food monitoring
Social marketing & communications	DP – Start-up Government - Ongoing	
Monitoring & evaluation, Program management	Oligoliig	

Is it affordable? Annual cost/person

Component	Serving Size (gm)	Cost TZS	ost SD
Wheat flour	110	354	\$ 0.26
Maize flour	300	647	\$ 0.48
Vegetable oil	30	24	\$ 0.02
Total		1,025	\$ 0.76

Summary of Cost-Benefit Analysis

COMPONENT	Amount	Percent of GDP
Benefits: Annual averted attributable losses	\$126.8 million	0.65%
probably underestimated		
Costs: Annualized costs Enriched Food Investment	\$ 13.8 million	0.07%
NET ANNUAL BENEFIT	\$113.0 million	0.58%
Estimated lives saved annually	6,767	



Summary of Cost-Benefit Analysis

- Benefit-Cost Ratio: 8.22-1
- means each 1000 shillings spent on food fortification generates 8220 shillings in net savings

