

Milling technology for cereals

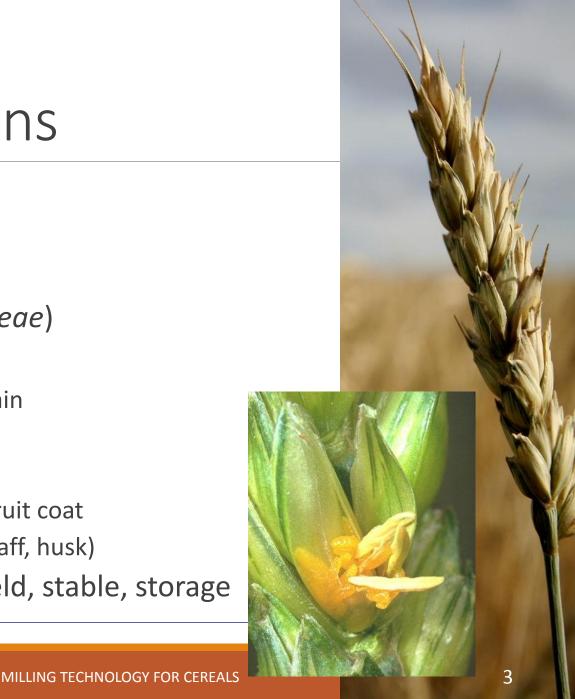
QA/QC on flour fortification, Kampala, 24-05-2016

DR. FILIP VAN BOCKSTAELE

FACULTY OF BIOSCIENCE ENGINEERING

LABORATORY OF CEREAL TECHNOLOGY

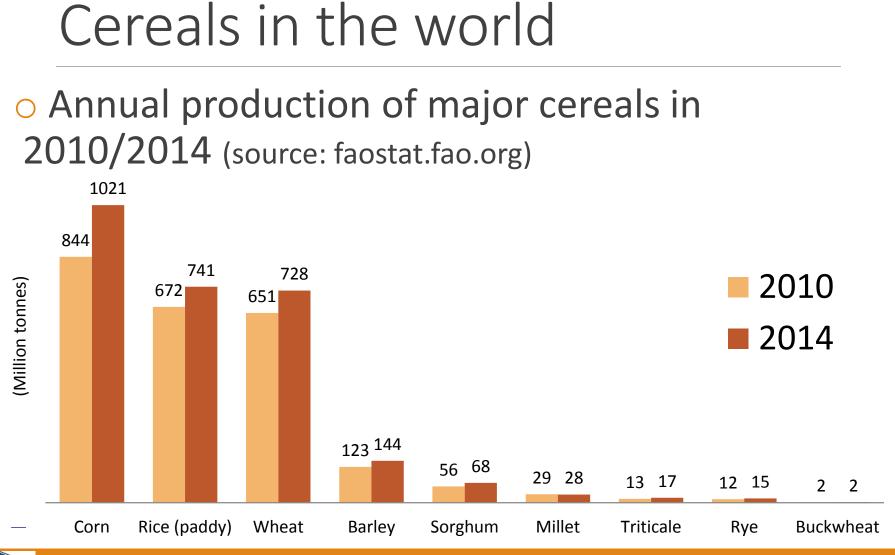
Cereals


24/05/2016

MILLING TECHNOLOGY FOR CEREALS

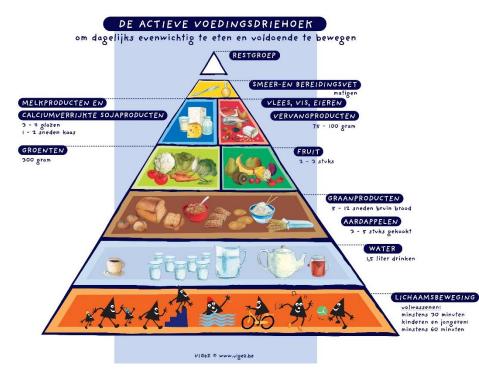
Cereal grains

OCeres


- •What are cereals?
 - Grass family (Gramineae)
 - One seeded fruits
 - Caryopsis = kernel = grain
 - Germ
 - Endosperm
 - Bran: seed coat and fruit coat
 - Developes in glume (chaff, husk)
 - Easy to grow, high yield, stable, storage

Cereal grains

Regnum	Eucarya						pseudo-cereals							
Subregnum	Chlorobionta						Ordo Caryophyllales/Polygonales							
Phylum	Streptophy	1a				- Fa	amilia <i>Ch</i>	naranthaceae: henopodiaceae: dygonaceae:	: Cheno	ranthus panic opodium quin	<i>toa</i> (quinoa)) (
Subphylum	Spermatop	hytina (se	eed plants)				′amilia <i>Po</i> . 10 <i>Malpigl</i>	ntum (buck	ntum (buckwheat)					
Classis	Magnoliop	sida (flov	wering plan	its)		Familia Euphorbiaceae: Manihot esculentum (cassava)								
Subclassis	<i>Lillidae</i> (m	ionocots)	1			≯ Roside	ae (dicots)							
Ordo	Poales	cere	als											
Familia	Poaceae (G	Graminea	e)											
Subfamilia	Poideae				Oryzoideae	te Panicoideae Ch					Chlorodoù	Thlorodoideae		
Genus	Triticum	Secale	Hordeum	Avena	Oryza	Zea	Sorghum	Pennisetum	Setaria	Panicum	Eragrostis	Eleusine		
Species Aegilops	durum turgidum aestivum spelta	cereale	vulgare	sativa	sativa i	mays	bicolor	glaucum	italica	miliaceum	tef	coracana		
squarossa	wheat	rye ¥	barley	oat	rice	maize	sorghum		Italic millet	true millet	teff	finger millet		
	T. turgidocereale; triticale													

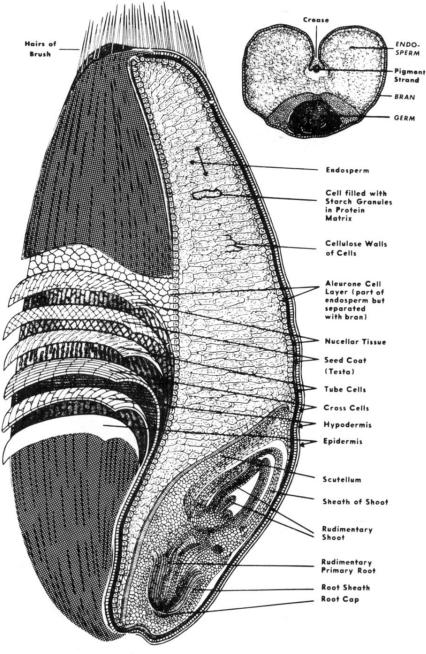

24/05/2016

UNIVERSITEIT GENT

MILLING TECHNOLOGY FOR CEREALS

Nutritional importance of cereals

- Macronutrients:
 - Carbohydrates (50-80%)
 - Staple food
 - Digestable: starch
 - Undigestable: dietary fiber
 - ^o Proteins (8-15%)
 - Lipids (1.5-7%)
- Micronutrients:
 - ^o Vitamins
 - ^o Minerals (1-2.5%)


Dewettinck, K., Van Bockstaele F., Kühne, B., Van de Walle, D., Courtens, T. and Gellynck, X. (2008). Nutritional value of bread: influence of processing, food interaction and consumer perception. Jounal of Cereal Science, 48, 243-257.

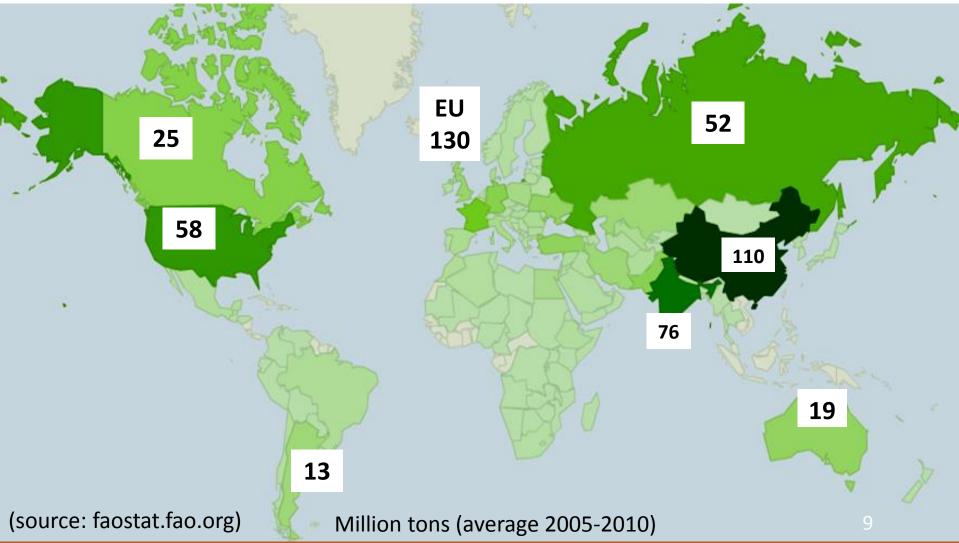
Wheat

24/05/2016

MILLING TECHNOLOGY FOR CEREALS

Wheat grain

ENDOSPERM (80%)


BRAN (17%) Incl. aleuronlayer

GERM (3%)

Y FOR CEREALS

Wheat producing countries

Wheat

OUnique -> wheat gluten proteins -> breadmaking quality

Wheat classification

OWheat class system depends on country

OWheat type

- Triticum aestivum (>90%)
- Triticum durum (±5%)
- OCriteria (USA)
 - Kernel texture: hard \leftrightarrow soft
 - Bran color: red \leftrightarrow white
 - Growth habit: spring \leftrightarrow winter

WHEAT CLASSES

Hard Red Spring wheat

Durum wheat

Hard Red Winter wheat

Soft Red Winter wheat

Soft White Winter wheat

Mixed wheat http://www.css.msu.edu/

Maize

24/05/2016

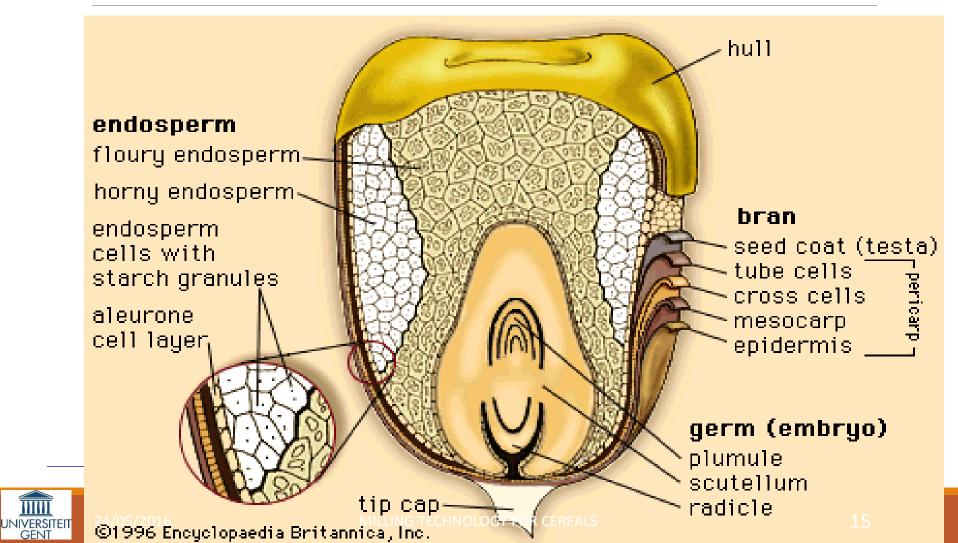
Corn/Maize

OMost produced grain

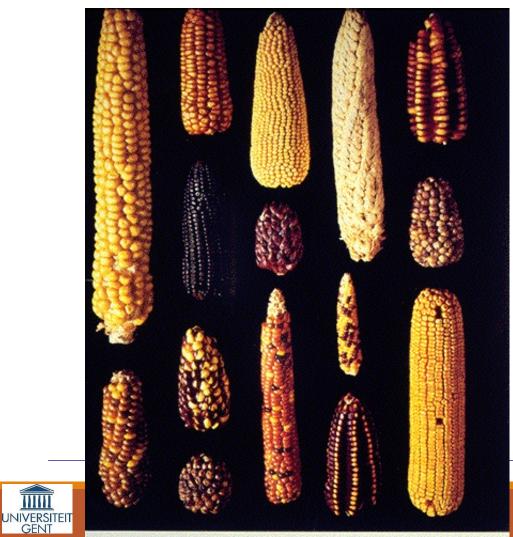
Highest yielding cereal (world average)

- Maize: 4.3 tonnes/hectare
- Paddy rice: 3.8 tonnes/hectare
- Wheat: 2.7 tonnes/hectare

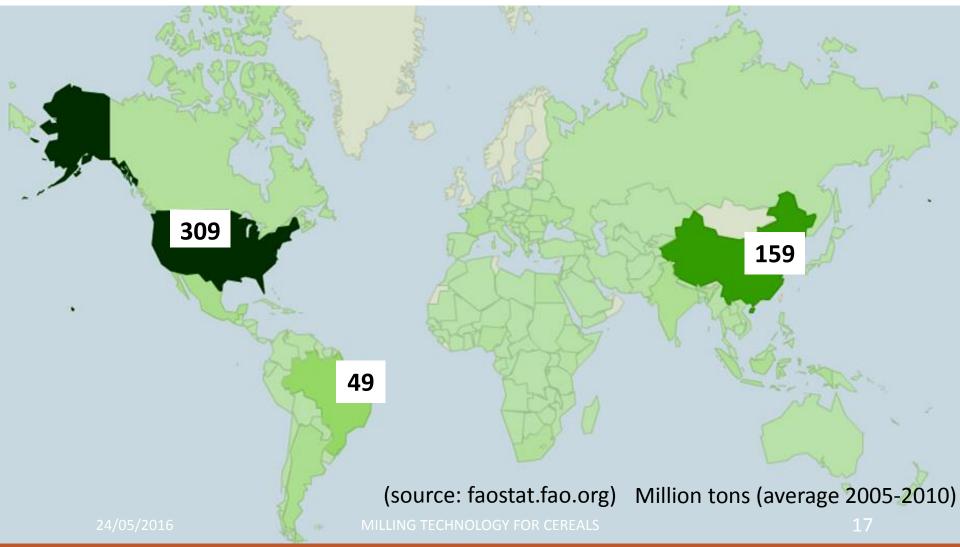
OAnimal feed



OHuman food: tortillas, porridge


OStarch production: wet milling

Maize grain


Maize

TYPES Dent Soft Waxy Popcorn Sweet White

FOR CEREALS

Corn producing countries

Cereal milling

24/05/2016

MILLING TECHNOLOGY FOR CEREALS

From cereal to flour

•Milling:

- Separation of bran/germ from endosperm
- Size reduction of endosperm -> flour
- OProcessing steps involved
 - Reception and pre-cleaning
 - Cleaning
 - Conditioning
 - Milling
 - Sieving
 - Blending

Reception

•Reception

- intake of cereals
- quality control!: IN -> OUT
- different factors
- pre-cleaning
 - o magnet
 - ^o sieve cleaner
 - ^o aspiration

Factors affecting milling yield, end use quality

- o hectoliter weight
- o Impurities
- o Immature kernels
- Preharvest sprouting sitophilus (weevil)
- Insect damage

Factors affecting food safety: moulds

FUSARIUM SPP.

Mycotoxins!

ERGOT

- Claviceps purpurea
- Toxic alkaloids
- Difficult to separate
- 0.05% limit

Wheat grain quality control

- Fast analysis before grain intake:
 - Moisture content
 - Protein content
 - Hectoliter weight
 - %Impurities
 - Amylase activity -> Hagberg falling number
 - Gluten quality -> sedimentation value of Zeleny

Storage

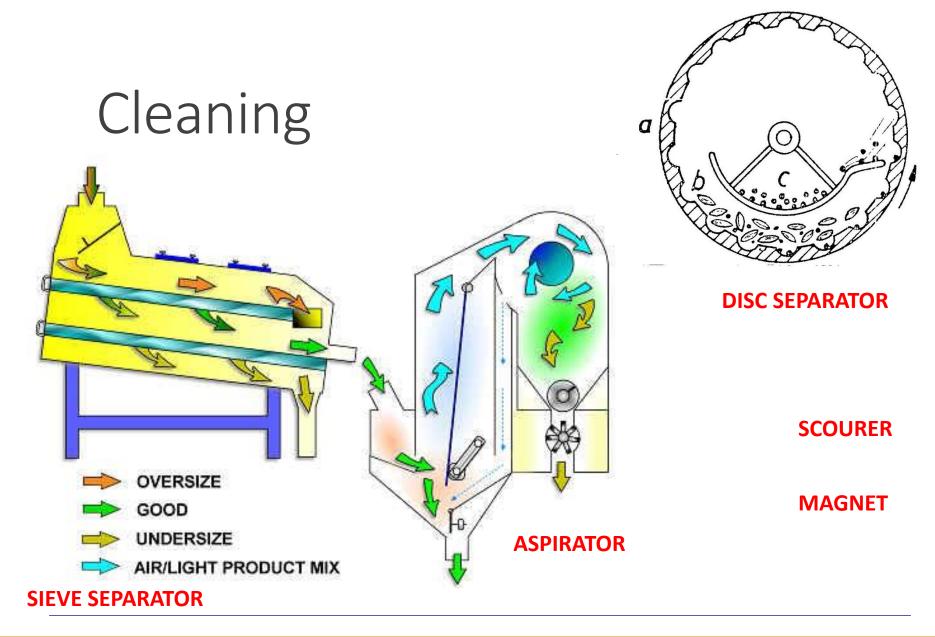
O Storage

- possible: low moisture content
- BUT living substance which can decay

Control

- temperature
- grain condition
- oxygen supply
- moisture content grain
 - safe value ~ cereal (13-15%)
 - drying if necessary
- pest and mould control

Blending and cleaning


OBlending

- wheat mix of uniform quality
- directly in storage bin
- just before milling process (other tempering conditions)

OCleaning

- remove impurities
 - undesired seeds, infested kernels, shrunken and broken kernels, other foreign material
- prevent contamination of mill products + damage of equipment
- separation based on differences in size, shape, specific gravity, behaviour in air currents, magnetic properties

Conditioning

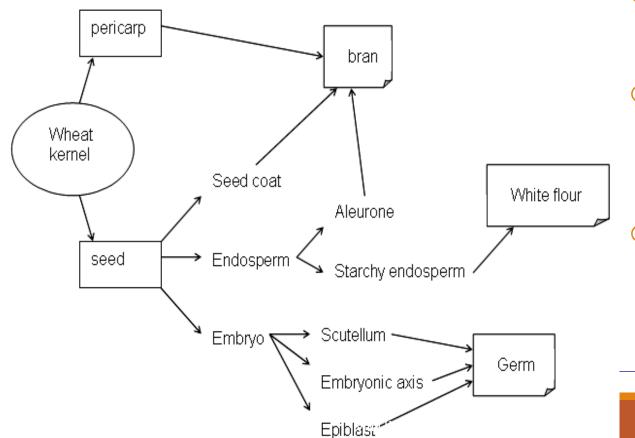
•Conditioning = adjustment of moisture content

• Not too dry

- bran should become elastic to avoid splintering and contamination of flour
- better separation of endosperm-bran
- less power required to grind to flour

• **N**ot too wet

- Endosperm too soft, no creation of sharp particles
- No efficient sieving


Conditioning

Tempering

- controlled addition of water (and heat)
- intensive mixing to ensure uniform distribution
- resting for a period of time (3-36 h)
 - optimal distribution in different parts of kernel
 - reduce hydration differences
- •25°C, 15-20% moisture content
 - Soft wheat: 15 16.5%
 - Hard wheat: 17 18%

Milling: goals

remove bran and germ

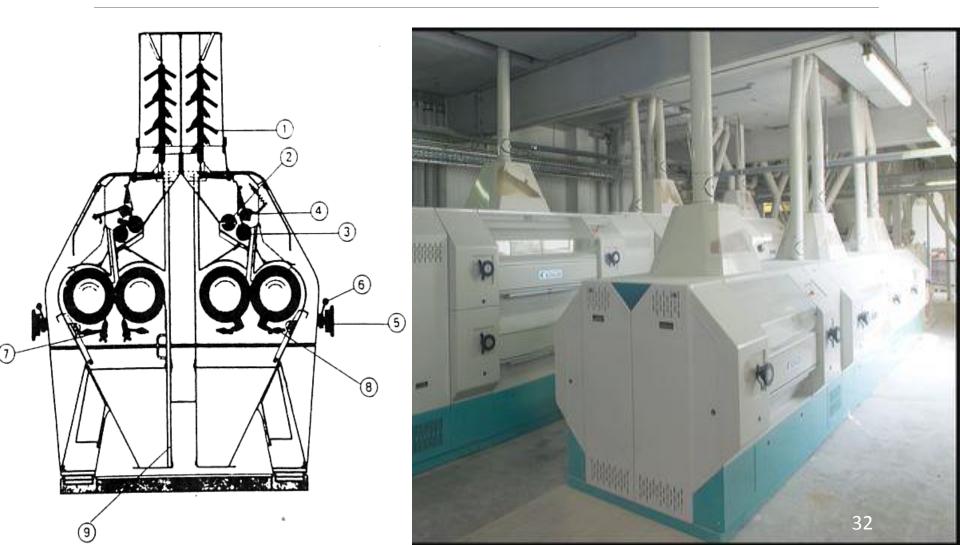
- flour with specific particle size distribution
- extract as much white flour as possible

Milling

Milling process

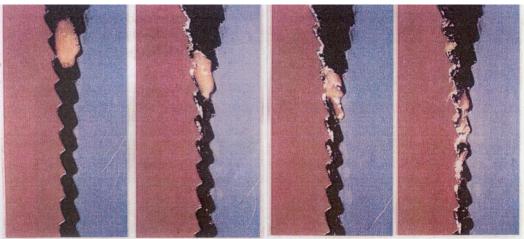
- multi-stage process
- size reduction, separation (sieving) and purification operations
- different materials at different stages BUT no fraction completely pure
- Milling efficiency
 - flour extraction degree
 - pureness of the fractions

Milling process


OSuccession of 3 systems:

- breaking
 - breaks up grain in large pieces
 - removing endosperm from bran
 - as little flour and bran powder as possible
- coarse reduction (scratching or sizing)
 - removing small pieces of bran and embryo from endosperm
 - smaller particles endosperm
- fine reduction
 - grinding endosperm into flour
 - minimum in crushed germ and bran powder
 - optimum in damaged starch granules

Roller milling



Roller milling: break system

- 4-5 breaks, corrugated rolls
 - first break opens kernel
 - subsequent breaks: scraping endosperm from the bran
 - gradually smaller but more corrugations

MILLING 1

differential from 2.5 to 1

Roller milling: reduction system

Oradual decrease of particle size into flour

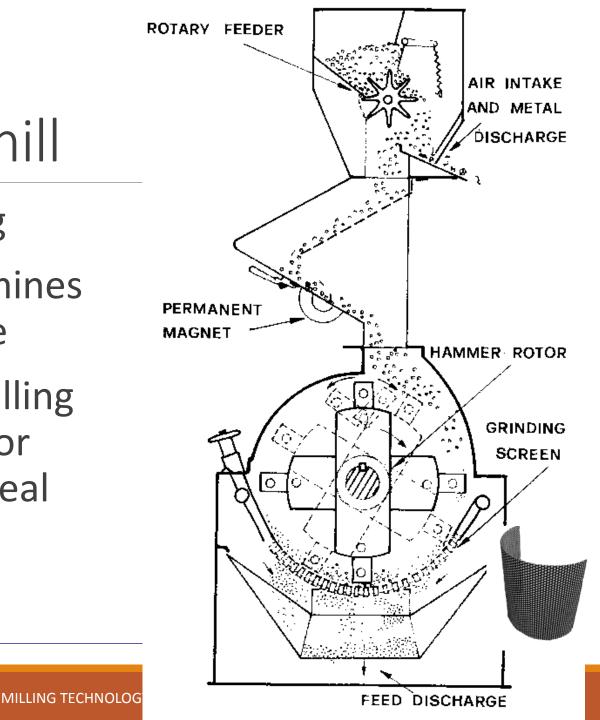
• Roller mill with **smooth rolls**,

- differential 1.25 to 1
- high shear pressure, lower shear forces

•Coarse reduction: 3-5 stages

- **r**emoving small pieces of bran and embryo from endosperm
- Smaller particles endosperm
- No severe grinding: no bran in flour

•Fine reduction: 6-10 stages


- grinding endosperm into flour
- **M**inimum in crushed germ and bran powder
- Optimum in damaged starch granules

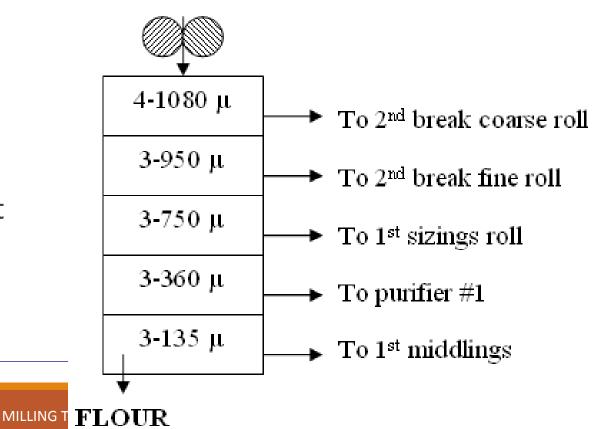
Material to purifiers, final reduction, flour

Hammer mill

- o impact milling
- screen determines
 the particle size
- requires dehulling when applied for 'white' flour/meal

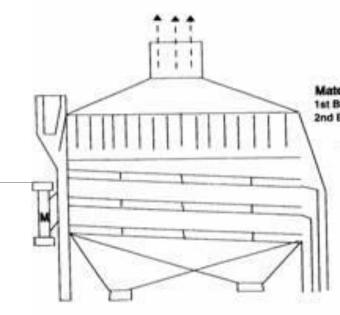
Sieving

MILLING TECHNOLOGY FOR CEREALS



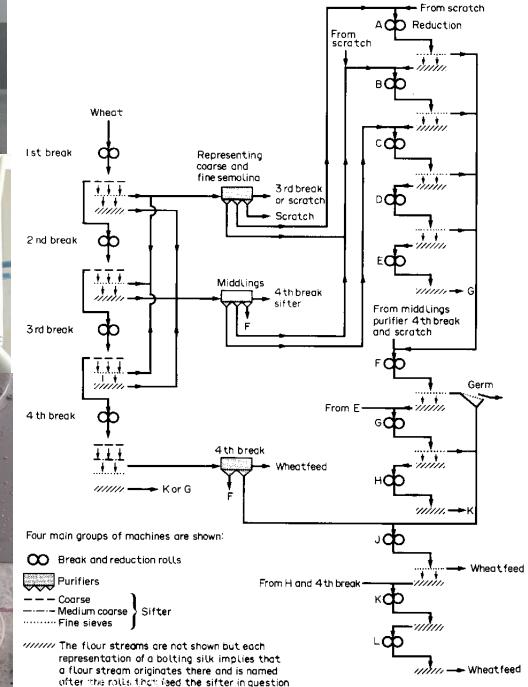
Sieving: plansifter

- Sieving stage follows each set of rolls
 - different mill fractions
 - directed to:
 - Next break rolls
 - Reduction rolls
 - Purifier

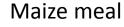

24/05/2016

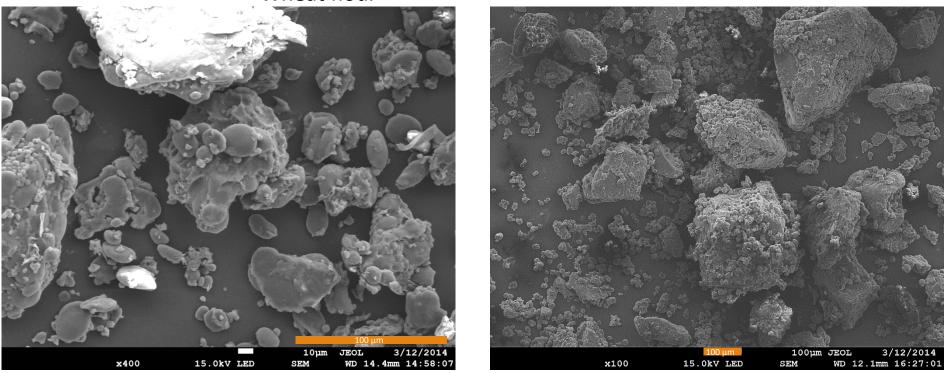
JNIVERSITEIT GENT Finished product

Sieving


OPurifiers

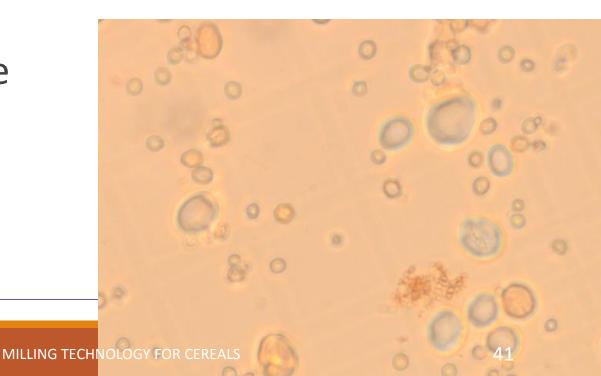
- separation of pure endosperm and endosperm with different amounts of bran
- vibrating motion of sieves: heavier endosperm close to sieve, brannier material on top
- **air currents** fluidise and stratify according to size, specific gravity and shape



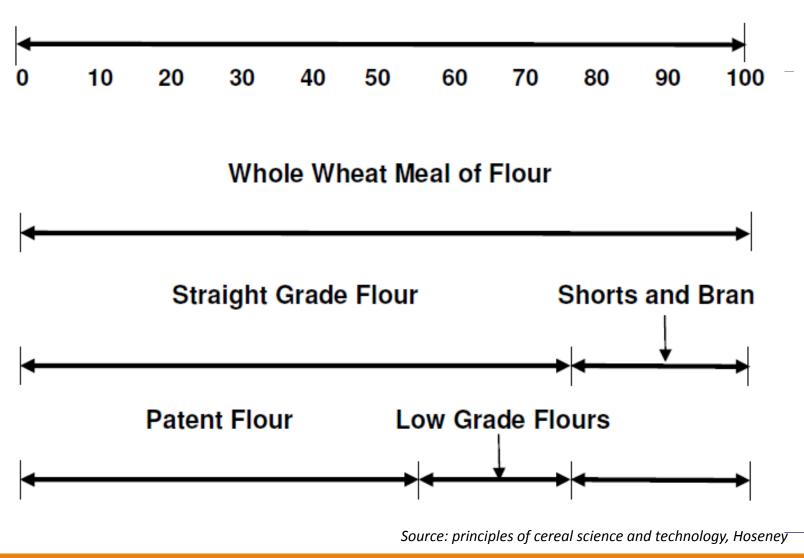


Milling: end products

Wheat flour



MILLING TECHNOLOGY FOR CEREALS


Milling and flour/meal quality

- •Particle size
- OBran content -> ash content
- •Color
- OStarch damage

% Extraction

Composition of Maize Product

Class of Maize Product		ent by Mass %)		ontent by s (%)	Fineness by Mass		
	Minimum	Maximum	Minimum	Maximum			
 Super Maize Meal 	-	Less than 2.0	-	0.8	At least 90% shall pass through a 1.4mm sieve, and less than 90% shall pass through a 300micrometer sieve.		
2. Special Maize Meal	2.0	Less than 3.0	-	1.2	At least 90% shall pass through a 1.4mm sieve.		
3. Sifted Maize Meal	3.0	Less than 4.0	-	1.2	At least 90% shall pass through a 1.4mm sieve.		
4. Unsifted Maize Meal	3.5	Less than 4.5	More than 1.2	2.5	At least 90% shall pass through a 1.4mm sieve		
5. <u>Samp</u>	-	1.5	-	0.8	Not more than 5% shall be whole grain and not more than 5% shall pass through a 2.36mm sieve		
6. Maize Rice	-	1.5	-	0.8	At least 90% shall pass through a 4.0mm sieve, and not more than 5% shall pass through a 1.18mm sieve		
7. Maize Grit	-	1.5	-	0.8	At least 90% shall pass through a 2.0mm sieve, and not more than 5% shall pass through a 850micrometer sieve		
8. Maize Flour	-	Less than 2.0	-	0.8	At least 90% shall pass through a 300micrometer sieve		
 No. 1 <u>Straightrun</u> Maize Meal 	3.7	-	1.8	2.5	At least 90% shall pass through a 2.36mm sieve		
10. No. 2 Straightrun	3.7	-	More	6.5	At least 90% shall pass through a		

Courtesy: Philip Randall

TO 200

Table 1

Chemical composition (dry basis) of wheat flour in function of the extraction rate (Pederson et al., 1989)

	Extraction rate (%)								
	100	95	91	87	80	75	66		
Starch + sugar (%)	69.9	73.2	75.3	77.2	80.8	82.9	84.0		
Protein $(n \times 6.25)$ (%)	14.2	13.9	13.8	13.8	13.4	13.5	12.7		
Fat (%)	2.7	2.4	2.3	2.0	1.6	1.4	1.1		
Dietary fiber (%)	12.1	9.4	7.9	5.5	3.0	2.8	2.8		
Ash (%)	1.8	1.5	1.3	1.0	0.7	0.6	0.5		
Energy (kJ/g)	18.5	18.5	18.5	18.5	18.5	18.4	18.3		
Phosphorus (mg/g)	3.8	3.3	2.8	2.1	1.5	1.3	1.2		
Calcium (mg/g)	0.44	0.43	0.38	0.33	0.27	0.25	0.23		
Zinc (ppm)	29	25	21	18	12	8	8		
Copper (ppm)	4.0	3.7	3.4	2.8	2.4	1.6	1.3		
Iron (ppm)	35	33	28	23	15	13	10		
Thiamine (µg/g)	5.8	5.4	_	4.8	3.4	2.2	1.4		
Riboflavin (µg/g)	0.95	0.79	_	0.69	0.46	0.39	0.37		
Niacin (µg/g)	25.2	19.3	_	10.1	5.9	5.2	3.4		
Pyridoxine (µg/g)	7.5	6.6	_	3.4	1.7	1.4	1.3		
Biotin (µg/g)	116	108	_	106	76	46	25		
Folic acid (µg/g)	0.57	0.53	_	0.45	0.11	0.11	0.06		

Milling technology for cereals

QA/QC on flour fortification, Kampala, 24-05-2016

DR. FILIP VAN BOCKSTAELE

FACULTY OF BIOSCIENCE ENGINEERING

LABORATORY OF CEREAL TECHNOLOGY