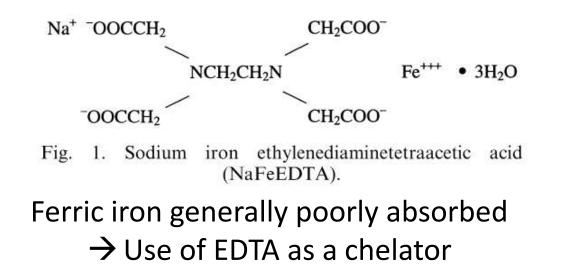

Efficacy of Sodium Iron EDTA in the Fortification Programs

Iron fortificants


Hurrell, 2007

Relative Bioavailability of iron compounds

Iron Fortificants	RBV
Ferrous sulfate	100
Encaps. ferrous sulfate	
Ferrous fumarate	
Encaps. ferrous fumarate	
Elemental iron	
Electrolytic	13-148
Carbonyl	5 – 20
H-reduced	13-148
Ferric pyrophosphate	21-74
NaFeEDTA	100-390
Ferrous bisglycinate	90-350

WHO, 2006

NaFeEDTA

EDTA binds Fe in soluble complex → Fe can't bind to phytate, inhibitors or hydroxyl ions

Duodenum : Fe released from EDTA absorbed by normal physiological mechanisms

Candela et al., 1984

Heimbach et al., 1999

Hurrell, 2002

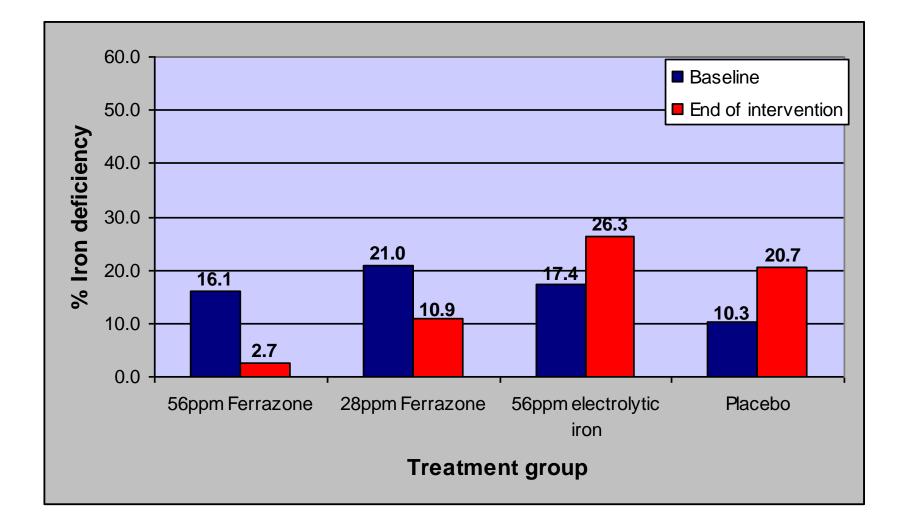
NaFeEDTA – Molar Ratio

Type of Meal	Molar ratio	Effect on Fe absorption	Source
Complementary Chinese food	EDTA:Fe 0.7:1 EDTA:Fe 0.4:1	No increase Increase	Chang et al., 2012
Margarine in women	14 mg added Fe as MGFePP or NaFeEDTA	Body iron stores increase 2-3 times with NaFeEDTA	Andersson et al., 2010
Wheat	EDTA:Fe 0.067:1	Maximum increase	Hurrell et al., 2002
High-phytate wheat- soy cereal	EDTA:Fe 1:1	Maximum increase	Hurrell et al., 2002
Rice fortified with FeSO ₄	EDTA:Fe 0.5:1	Maximum increase	MacPhail et al., 1994

Fe absorption increases with NaFeEDTA compared to FeSO4 or ferrous fumarate

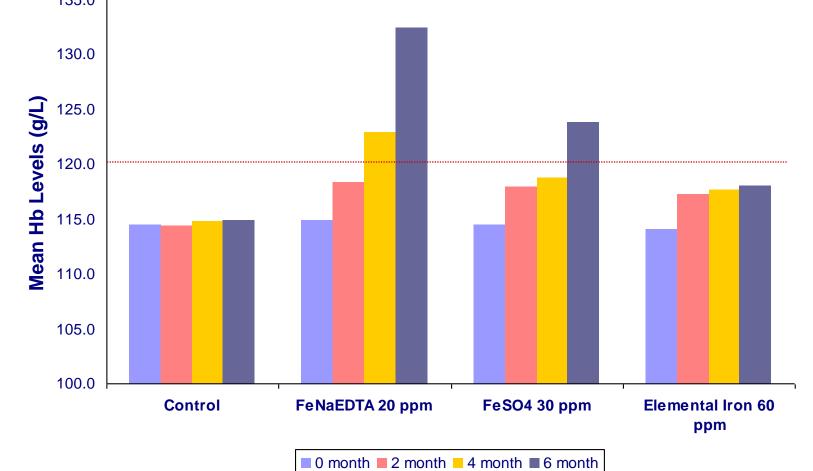
Hurrell, et al., 2000

Effect on other minerals


Study population	Mineral	Effect of NaFeEDTA compared with FeSO ₄	Effect of NaFeEDTA compared with FeSO ₄ and Ascorbic acid
Women, wheat-	Zn	Significant increase	NA
based meal (Davidsson et al., 1994)	Са	No change	NA
Adult, weaning cereal (Davidsson et al, 1998)	Mn	No change	NA
	Zn	NA	No change
Infant, complementary	Cu	NA	No change
food (Davidsson et al.,	Са	NA	No change
2005)	Mg	NA	No change

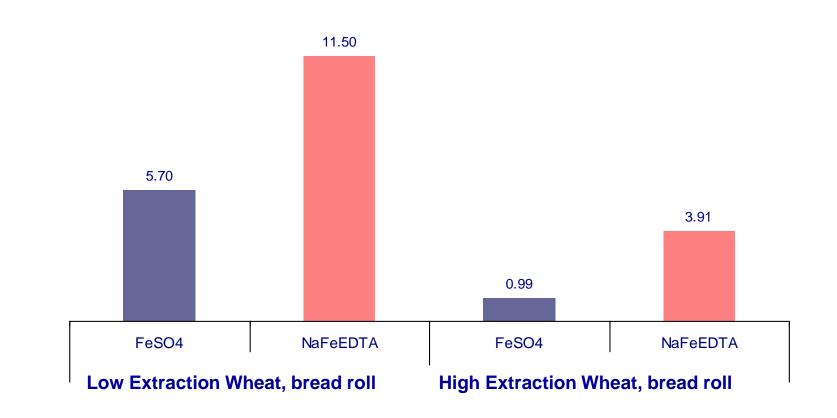
Safety

Concerns	Explanations	Source
Fe overload	No risk if 0.2 mg FE/kg body weight	JECFA, 2000; CanTox, 2003
Fe Toxicity in children	Fe toxicity : 25 mg Fe/kg body weight Fe poisoning : 60 mg/kg body weight	Whittaker et al., 2002
Interferences with minerals	Rats studies show no adverse effect	Garby and Areekul, 1974, Soalomons et al., 1979, Viteri et al., 1995
Mutagenecity	Mouse lymphoma TK : no difference with other Fe compounds	Dukel et al., 1999
EDTA toxicity	 Pigs : 72-91% of Fe and EDTA found in feces Rats : minimal difference with ferrous sulfate Human : 1% Fe intact Fe 	Candela et al., 1984 Appel et al., 2002 MacPhail et al., 1981


<i>Atta</i> wheat flour intake (g/d)	Iron from NaFeEDTA added to flour (mg/kg)	Dietary iron delivered from NaFeEDTA (mg/d)	Physiological iron from NaFeEDTA (10%) (mg/d)	Price to deliver NaFeEDTA (Rs/MT)
100	31	3.1	0.31	149
100	31	3.1	0.16	37

Impact maize fortification with NaFeEDTA on prevalence of ID in Kenyan school children

Andang' o et al. (2007)


Impact on prevalence of anemia with iron-fortified wheat flour in Henan Province, China

Chen Chunming et al. (2005)

Iron Absorption from Cereal Foods

Mean Iron Absorption (%)

Hurrell et al. (2000)

Objectives

- 1. To test the efficacy of NaFeEDTA fortified wheat flour in reducing the prevalence of anemia and iron deficiency and in improving iron status and total body iron in Indian school children
- 2. To assess the effect of NaFeEDTA fortified wheat meal on the cognitive performance of school children
- 3. To evaluate NaFeEDTA fortified wheat flour in organoleptic studies in India

Study sites & Investigators

• Urban school- Bangalore City – AV Kurpad

• Rural Schools, Vadu, Pune – CS Yajnik

Ethical approval

- The study protocol was approved by the Ethical committees of
 - St. Johns Medical College, Bangalore, India
 - KEM Hospital, Pune
- Informed, written consent obtained from parents

Oral assent obtained from children

Flour preparation & mixing

Flour:

Whole wheat flour from Christy Industries, Tiruchengodu, Tamil Nadu

Iron fortificant:

NaFeEDTA (Ferrazone), Akzo Nobel Functional Chemicals

Mixing at the factory:

2 metric tons mixed @ 6 mg NaFeEDTA in 100 g of wheat flour (July 2007 and December 2007)

The mixed flour was packed in colour coded 20 kg bags and stored at room temperature

Baseline Screening

1317 children screened

Indicators

- Five ml of whole blood by venipuncture
 - Hemoglobin (Hb)
 - Serum ferritin (SF)
 - Zinc protoporphyrin (ZnPP)
 - Serum transferrin receptor (TfR)
 - C-reactive protein (CRP)

Inclusion criteria

Iron deficiency with or without anemia defined as:

SF <15 μg/L <u>or</u> and/or TfR >7.6 mg/L

Subjects and study design

7-mo, randomized, double-blind, controlled trial

 6 mg of Fe (as NaFeEDTA) / 100 g of local high extraction whole wheat flour as a lunch meal, 6 days a week

Iron status assessed at 3.5 and 7 months after start of intervention

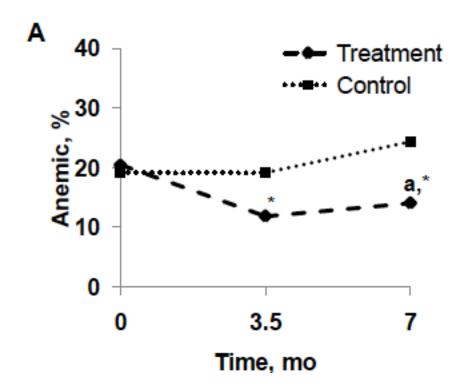
Baseline Characteristics

Parameters	Iron group N = 97	Control group N = 97
Age (y)	10.4 ± 2.5	10.2 ± 2.7
Weight (kg)	26.2 ± 7.9	25.3 ± 7.8
Height (m)	1.32 ± 0.14	1.30 ± 0.15
Hemoglobin (g/dL)	12.6 ± 1.3	12.7 ± 1.2
Serum Ferritin ¹ (µg/L)	12.9 (6.9, 24.3)	12.8 (7.4, 22.2)
Transferrin Receptor (mg/L)	6.5 ± 4.2	6.4 ± 3.0
Total body iron (mg/kg)	1.2 ± 2.9	1.3 ± 2.7

¹Geometric mean (mean -1SD, mean +SD) No significant differences between groups

Changes over time -Anthropometry

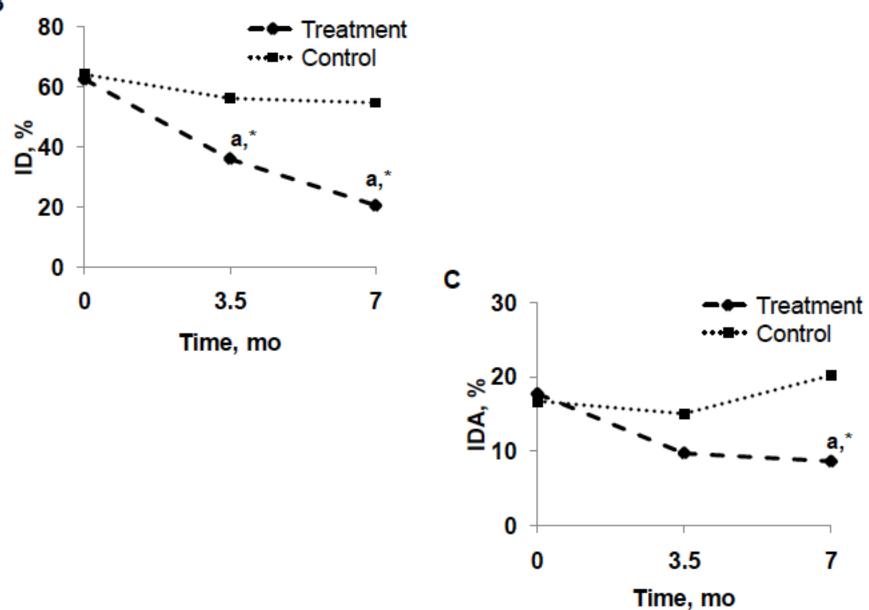
	*		Time	
	п	Baseline	3.5 mo	7 mo
Body weight, <i>kg</i>				
Treatment group	182	27.0 ± 8.1	29.2 ± 9.0	30.2 ± 9.3
Control group	180	26.0 ± 7.1	28.1 ± 8.8	29.3 ± 9.2
Height, <i>m</i>				
Treatment group	172	1.34 ± 0.15	1.36 ± 0.14	1.38 ± 0.14
Control group	180	1.32 ± 0.15	1.35 ± 0.15	1.37 ± 0.15


Change in anthropometry and iron status over 7 months

	0 mc	onths	3.5 months		7 months	
	lron group	Control group	lron group	Control group	lron group	Control group
Weight (kg)	26.2 ± 7.9	25.3 ± 7.8	28.0 ± 8.7	26.4 ± 8.2	29.3 ± 9.1	27.8 ± 8.7
Height (m)	1.31 ± 0.13	1.30 ± 0.14	1.34 ± 0.14	1.32 ± 0.15	1.36 ± 0.14	1.34 ± 0.15
Hb (g/dl)	12.6 ± 1.2	12.7 ± 1.2	12.9 ± 1.0	12.5 ± 1.3	13.3 ± 1.1**†	12.7 ± 1.4
SF ¹(µg/I)	12.5 (6.6, 23.3)	12.7 (7.2, 22.2)	19.1 (9.8, 37.3)	13.6 (6.7, 27.7)	24.8**† (13.6, 45.2)	13.1 (6.7, 26.0)
sTFR (mg/l)	6.5 ± 4.2	6.4 ± 3.1	6.5 ± 4.2	6.9 ± 2.5	6.4 ± 2.2**	7.6 ± 3.4
Total body iron (mgkg)	1.2 ± 2.9	1.3 ± 2.7	2.8 ± 2.9	1.2 ± 3.3	3.6 ± 2.7**†	0.7 ± 3.3

¹ Geomean (mean- SD, mean +SD)

** Significantly different between each other; [†] significantly different from baseline P<0.01 Hb, SF, sTfR, and TBI: significant *time x treatment* interaction (P<0.05)


Change in Anemia Prevalence

Anemia prevalence decreased from 18% to 7% in the fortified group

Time x treat – p<0.01

Change in ID and IDA prevalence

Organoleptic Testing

Triangle Test

- 3 different common meals prepared using the NAFeEDTA flour and the control flour by a local cook using traditional recipes
- A panel of 20 local women
- Three coded samples of the each food will be given in random order

Instructions:

- Assess flavor, odor and color of local dishes
- Determine the one that is different and describe how it differs

Triangle tests for sensory assessment

Food tested	No of Subjects (N)	No of correct answers (N)	Significance
Raw wheat flour (6 mg/100g)	18	4	NS
Raw wheat flour (10 mg/100g)	18	4	NS
Wheat chapathi (6 mg/100g)	18	6	NS
Wheat chapathi (10 mg/100g)	18	5	NS
Wheat poori (6 mg/100g)	18	2	NS
Wheat poori (10 mg/100g)	18	4	NS
Wheat dosa (6 mg/100g)	18	4	NS
Wheat dosa (10 mg/100g)	18	6	NS

Conclusions

- Whole wheat flour fortified with NaFeEDTA is efficacious in reducing IDA and ID prevalence and improving iron status and body iron stores in iron deficient school Indian children
- NaFeEDTA is an ideal iron compound for whole wheat flour fortification
- Strong evidence base for action Mass fortification for use in school meal programs and in PDS must be considered