

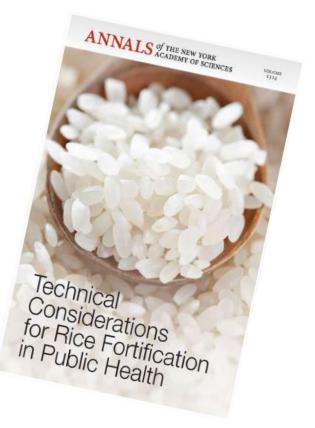
# **Rice Fortification: Why, What, How and Global Evidence**

5 November, 2014

2<sup>nd</sup> International Workshop on Micronutrients and Child Health New Delhi

### Content

Provide a summary of the evidence on rice fortification and rationale for it being part of the solution to micronutrient deficiencies


#### Provide update on WFP's work in nutrition for MNCH

- 1 Why, What and How
- 2 Summary of the current evidence
- 3 Way forward, including challenges and next steps

## **Building Consensus on Rice Fortification**

Technical Consultation meeting organized by WHO in collaboration with GAIN for Rice Fortification in Public Health, September 2012

Review the industrial and regulatory technical considerations in rice fortification



**Bangkok Meeting on Rice Fortification – September 2014** 

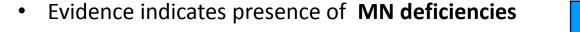
Scaling Up Rice Fortification in Asia, hosted by FFI, PATH, WFP, MI, UNICEF and GAIN

#### <u>Consensus</u>:

1 Evidence of widespread micronutrient deficiencies

- 2 Rice consumption is high
- There are different technologies that can be used to fortify rice, of which extrusion is the best researched
- 4 Evidence of impact for a number of nutrients
- 5 We should build on existing cereal fortification guidelines, including the interim statement on flour fortification




- Large % of the population relies on rice as the main staple food
- $\succ$  Rice provides a large share of caloric intake (50-70%)
- > MNDs are high in rice-consuming areas
- Polished rice is a poor source of key vitamins and minerals
- Fortification has been identified as a very cost effective intervention
- Technology now exists

### **'Rice' Fortification**



## Does micronutrient (MN) intake need to be increased & selecting the vehicle

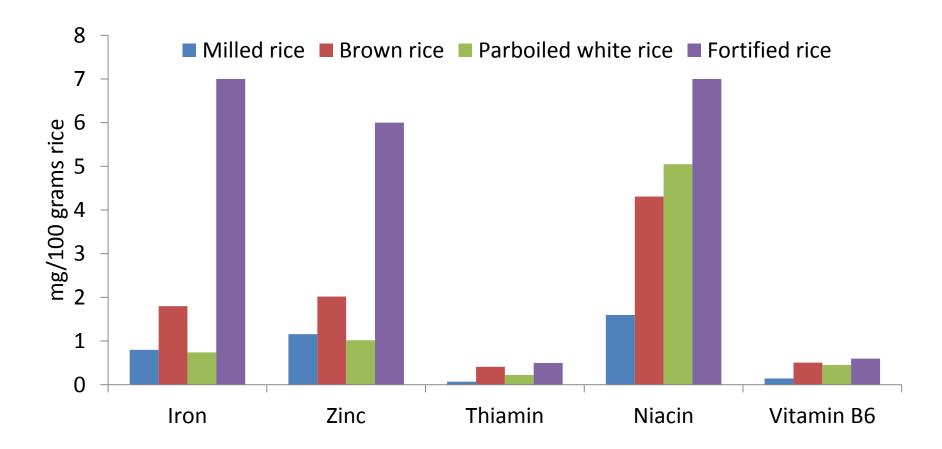




- Deficiencies are to large extent caused by **low intake**
- MN deficiencies exists among general population






Consumed on a regular basis Vehicle May include cereals (wheat, corn, rice), oils, dairy products, beverages and various condiments such as salt, sauces (e.g. soy sauce) and sugar

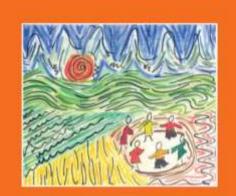
Suitable

Centrally processed

Premix can be added easily and cheaply

## Other ways to improve micronutrient content of rice






Saman Rice Mill in Uruguay. Photo by Angela Rowell.

## **Biofortification**

- For staple food fortification, the target is getting consumers above the Estimated Average Requirement
- Improved micronutrient intake, but not eliminate all MNDs
- Who has high needs, who is likely to benefit from fortified rice?
  - > WRA, adolescent girls, men, SAC
  - PLWs will benefit but not meet needs
  - > 6-23 months need more nutrient dense foods

## Which MN to consider for rice fortification & ensuring it is effective



Guidelines on food fortification with micronutrients

Edited by Lindsay Allen, Bruno de Benoist, Omar Dary and Richard Hurrell



Food and Agricultural Organization of the United Nations

## Consider wider food fortification expertise & experience

#### Which micronutrients are of interest?

- Consider public health needs and nutrient gap
- Refer to WHO's guidelines on food fortification and interim consensus statement on flour fortification
- Compare maize and wheat flour fortification to rice

#### Can micronutrients be **successfully added** to rice and **absorbed** by the body?

## Several requirements for successful rice fortification

| Storage | Preparation | Acceptability | Absorption |
|---------|-------------|---------------|------------|
|         |             |               |            |

Impacted by: choice of fortificant forms, choice of fortificant mixture, fortification technology









Stability during storage

Limited losses during preparation: washing, cooking, discarding excess water Acceptability to consumer: appearance (shape and colour), taste Availability for absorption by the body

#### Efficacy

#### Effectiveness

As for maize and wheat flours: Iron Folic Acid Vitamin B12 Vitamin A Zinc

Many others also possible, such as:

- Vitamin E
- Vitamin D
- Selenium
- Lysine

Possible, but:

• Riboflavin

- Beta-carotene
- Calcium
- Vitamin C
- DHA
- Iodine

For rice, also add MN lost through polishing: Thiamin Vitamin B6 Niacin

De Pee S. Annals NY Acad Sci 2014

### **Evidence**

| Micronutrient | Fortificant forms                      | No. of studies that included<br>the micronutrients<br>14 / 1 |  |
|---------------|----------------------------------------|--------------------------------------------------------------|--|
| Iron          | MFPP (ferric pyrophosphate) /<br>FeSO4 |                                                              |  |
| Zinc          | Zinc oxide                             | 1                                                            |  |
| Folic acid    | Folic acid                             | 1                                                            |  |
| Vit B12       | Cyanocobalamin                         | 1                                                            |  |
| Vit A         | Vit A palmitate                        | 4                                                            |  |
| Thiamin       | Thiamin                                | 2                                                            |  |
| Niacin        | Niacinamide                            | 0                                                            |  |
| Vit B6        | Pyridoxine hydrochloride               | 1                                                            |  |

## **Characteristics of Study Populations**

#### Study populations:

- Philippines, India, Thailand, Nepal, Brazil, Mexico
- School-age children , women of reproductive age, preschoolers, 6-23 mo old children
- Some studies targeted anemic individuals





#### Important to note:

- First study '47-'49, Philippines, coated rice, iron, B1, B3 focused on beri-beri
- All other studies on extruded rice (hot & cold)
- 13 Efficacy, 2 effectiveness studies
- 10 studies on Fe only, 4 multi-MN, 1 VA only
- School children, one meal per day

| Micronutrient | Study details                                                                                                                                                                |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Iron          | 14 studies                                                                                                                                                                   |  |  |
| Zinc          | 1 – Pinkaew (2014) – Thailand – 20 mg/meal <b>, non-sign increase</b>                                                                                                        |  |  |
| Folic acid    | 1 – Thankachan (2012) – India – 75 ug/meal, sign decrease of homocysteine                                                                                                    |  |  |
| Vit B12       | 1 – Thankachan (2012) – India – 0.75 ug/meal, <b>sign increase of plasma B12</b>                                                                                             |  |  |
| Vit A         | 4 studies                                                                                                                                                                    |  |  |
| Thiamin       | Salcedo (1950) – Philippines – 0.44 mg/100 g <b>– beri beri prevalence dropped</b><br>(14.3 to 1.5%);<br>Thankachan (2012) – India – 0.38 mg/meal – <b>non-sign increase</b> |  |  |
| Niacin -      | 0 studies                                                                                                                                                                    |  |  |
| Vit B6 -      | 1 study, but B6 status not assessed                                                                                                                                          |  |  |

| Reference          | Country  | Study<br>group                  | Dosage       | Findings                                                                                       |
|--------------------|----------|---------------------------------|--------------|------------------------------------------------------------------------------------------------|
| Pinkaew<br>2014    | Thailand | 8-12 y olds                     | 3000<br>RE/d | BL serum retinol 1.21 umol/L –<br>total body retinol increased – BL<br>serum retinol unchanged |
| Pinkaew<br>2013    | Thailand | 4-12 y <b>old</b>               | 2500<br>RE/d | BL serum retinol 1.01 umol/L<br>- No sign increase                                             |
| Thankachan<br>2012 | India    | 6-12 y old                      | 500 RE/d     | BL serum retinol 2.1-2.6 umol/L –<br>No change                                                 |
| Haskell 2003       | Nepal    | Nightblind<br>pregnant<br>women | 850 RE/d     | Serum retinol increased in all groups, most in liver & high-dose capsule groups                |

Conclusion: Improvement of VA status depends on baseline status & indicator used

#### Characteristics:

- 13/14 studies MFPP, 1 study both MFPP & FeSO4
- 10 iron only fortification
- 3 papers, Arcanjo et al (Brazil), one 50 g meal/wk, 56.4 mg Fe
- Other studies 6-30 mg Fe/meal, mostly 1 meal/d school children = efficacy
- More than one meal per day: 1 study effectiveness, fortified rice given to households (Angeles-Agdepa 2011)
- Blending: 0.5-2.5%
- No reporting on color of kernels controlled studies, no acceptability issue
- If blending at 1%, max iron content without color change: 7 mg/100 g. If consuming 200-300 g/d = 15-20 mg/d

Thus, mostly well-controlled studies, 1 meal/d among school children

#### **Results:**

- 2 did not report on Hb or iron status
- Hb improvement / anemia decline 6/12 studies
- Iron status parameters improved -6/8 studies

#### Note:

- Hb not only affected by iron deficiency
- Baseline Hb not that low in some of the studies
- One meal per day studies have higher ratio for iron to absorption inhibitors

   thus, under real life, iron absorption may be lower

Summary:

- \* Most found impact on iron status and anemia
- \* Studies mostly one-meal-per-day studies
- \* MFPP not most bioavailable iron fortificant, but only one that does not affect colour and taste

#### **Evidence for impact on MN status:**

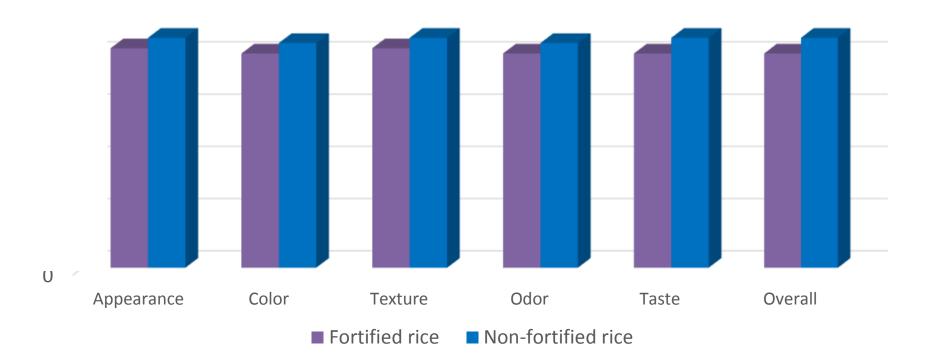
- Good enough for: Iron, vit A, folic acid, thiamin, vit B12
- Plausible for: Niacin
- To be confirmed for: Zinc, vit B6



**Research for further optimization:** 

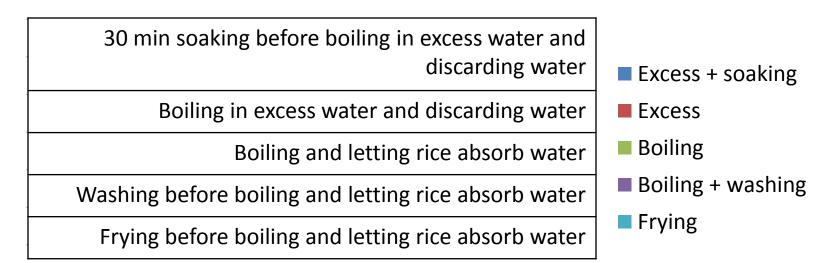
- Iron form higher absorption, while maintaining good acceptability
- Study multi-MN fortified rice & different technologies
- Scenario's: every meal from fortified rice, e.g. social safety net




Is rice fortified as agreed (QA & QC)? Does rice reach the population as intended?

Do people consume the rice at expected level? Does the rice contain the expected MN at consumption?

Does MN status and function (morbidity, cognition) improve?


#### Effectiveness

Acceptability Scores for Fortified and Non-fortified Rice: Sensory Evaluation by Indian Children 8-11 Years



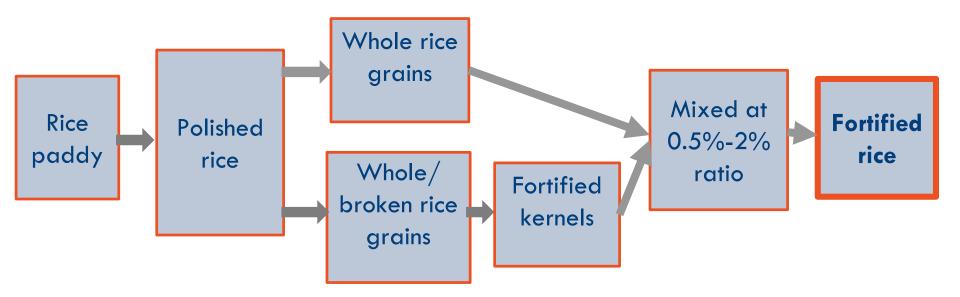
## Are the nutrients in fortified rice retained after preparation and cooking?

#### Percent Retention of Nutrients Exposed to Different Preparation and Cooking Methods: Average for Coating, Cold Extrusion & Hot Extrusion



## **Next Steps – Opportunities and Further Work**

- Significant progress has been made
- Growing interest and consensus among many stakeholders
- Important opportunity to address micronutrients
- Complexity of implementation
- Kernel availability
- Local production and small-scale milling
- Policy and regulation leadership and a coalition
- Optimization of fortificants: ongoing, especially for iron, and these findings can be incorporated when available
- Costs who picks up the additional costs -- Cost-benefit


Saskia de Pee, WFP Megan Parker, PATH Helena Pachón, FFI Scott Montgomery, FFI

- Treating with hot water and/or steam enhances intrinsic nutrients
- Additional nutrients not usually included
- Efforts to get external nutrients into the grain (iron, zinc, folic acid) have been studied

- All rice grains dusted with a fortificant mix
- Limited nutrient protection
- Sedimentation risk
- Frequently done in USA
- Due to nutrient loss, not suitable in countries where rice is washed or where excess cooking water is discarded

## Overview: creating fortified kernels to blend with nonfortified rice grains

## Applies to coating and extrusion



### Coating

- Nutrients are added in coating layer on the rice surface
  - Several coating technologies; different performance of FK
  - Some rinse-resistant; some not
- Native rice variety can be coated
- Either broken or whole grains can be coated
- Nutrients disperse in rice upon cooking; allows higher concentration of nutrients in FK

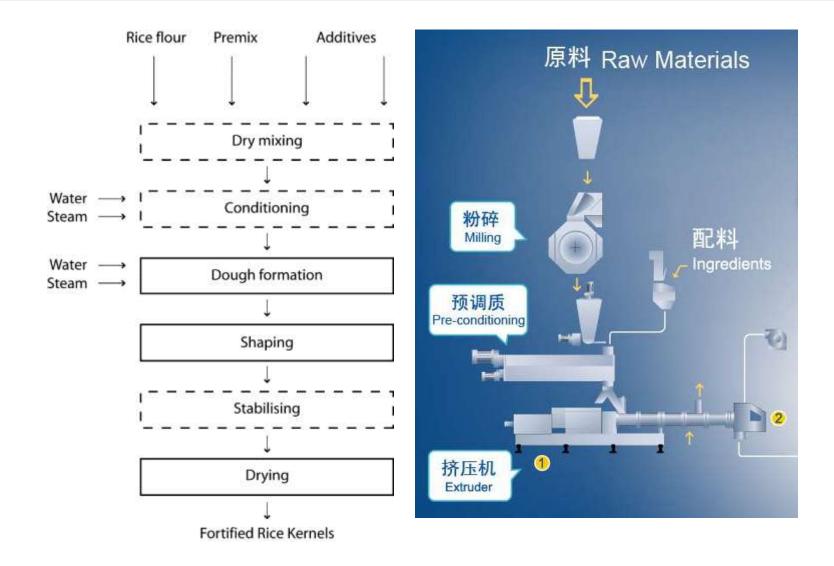


Examples of fortified rice made by blending coated kernels with non-fortified rice. Wright Group photo.

## **Extrusion**

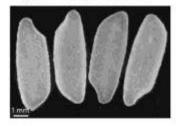
- 1. Broken rice grains can be used as starting material
- 2. Micronutrients are equally distributed inside the fortified kernel
- 3. Only few particles are on the surface, thus reducing exposure to environment and nutrient degradation
- 4. Color impact from micronutrients depends on nutrient formulation

### **Extrusion technologies**


Temperature influences appearance and cooking characteristics of final fortified kernels

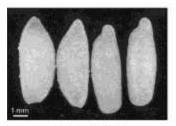
- Cold extrusion uses a pasta press at 30 50°C
- Warm extrusion includes a preconditioner and uses a pasta press or extruder (single or double) at 60 80°C
- Hot extrusion includes a preconditioner and uses a extruder (single or double) at 80 110°C



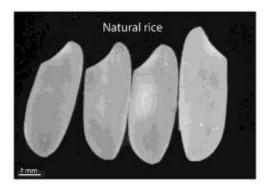

DSM research Photo: Bühler Group hot extrusion equipment

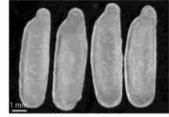
## **Basic extrusion steps**



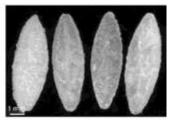

## Appearance of fortified kernels

warm extrusion, gluten-free pasta process

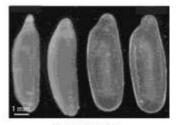



cold extrusion




hot extrusion low SME






hot extrusion medium SME



warm extrusion, pre-conditioner / pasta press



hot extrusion, high SME

From: Steiger et al. Fortification of rice: technologies & nutrients. NY Anals 2014