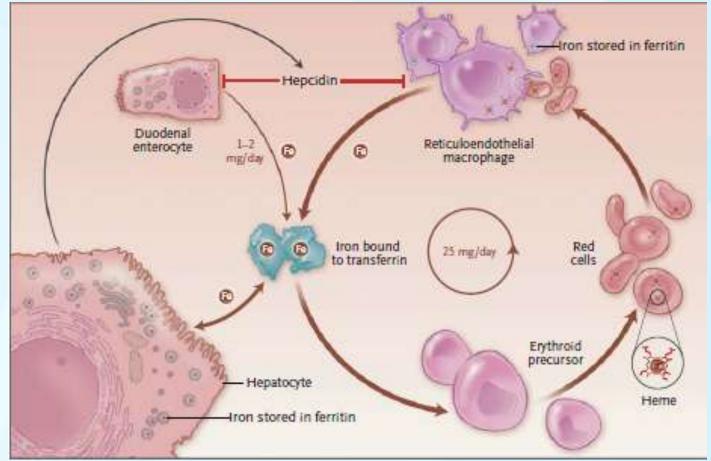
Evidence for the Safety of Fortifying Flour with Iron in the Presence of Thalassemia and Other Blood Disorders

Althea M Grant, PhD

Chief, Epidemiology and Surveillance Branch, Division of Blood Disorders, NCBDDD, CDC

Ankara, Turkey 12 June 2012

The findings and conclusions in this presentation are those of the author and do not necessarily represent the views of the Centers for Disease Control and Prevention



Dietary Iron

- Essential micronutrient
- Most contained in red blood cells and recycled
- No mechanism for excretion
- Iron levels controlled by absorption
- Loss only through blood loss or sloughing
 - Normally lose 1 mg per day
 - Menstruation 10 mg per cycle (more for heavy bleeders)
 - Blood Donation- 250mg
 - Increased demand due to pregnancy 700mg

Absorption is generally 5-10% of dietary intake

Iron Absorption and Transport

Fleming, Robert E, and Prem Ponka. 2012. "Iron overload in human disease." *The New England journal of medicine* 366 (4) (January 26): 348-59. doi:10.1056/NEJMra1004967. http://www.ncbi.nlm.nih.gov/pubmed/22276824.

Secondary Iron Overload

Iron absorption mediated by hepcidin

Secondary iron overload caused by ineffective erythropoiesis

- Hepcidin expression is decreased when erythropoiesis is increased
- Due to downregulation of hepcidin
- Failure to inhibit ferroportin
- Increase iron export from enterocyte into plasma
- This is seen in "iron-loading anemias"

Fleming, R. E., & Ponka, P. (2012). Iron overload in human disease. *The New England journal of medicine*, 366(4), 348-59. doi:10.1056/NEJMra1004967

Some causes of secondary iron overload.

□ ■ ■ereditary disorders

- Thalassemia
- Pyruvate kinase deficiency
- Dyserythropoietic anemia
- Glucose-6-phosphate dehydrogenase (G6PD) deficiency
- Hereditary spherocytosis
- Sideroblastic anemia (ALA-S deficiency)

Acquired disorders

- Sideroblastic and other dyserythropoietic anemias
- Any anemia, except for that due to blood loss, in which multiple transfusions are required.

Beutler, Ernest, a Victor Hoffbrand, and James D Cook. 2003. "Iron deficiency and overload." *Hematology* (January): 40-61. http://www.ncbi.nlm.nih.gov/pubmed/14633776.

Common Types of Alpha Thalassemia

# of Affected Genes (out of 4)	Alpha Thalassemia	Clinical Significance
1	Silent Carrier	No symptoms
2	α Thal trait	Microcytosis +/- Mild anemia
3	Hb H Disease	Moderate to severe anemia
4	α Thal Major (Hydrops Fetalis)	Usually die before or shortly after birth

Common Types of Beta Thalassemia

# of Affected Genes (out of 2)	Beta Thalassemia	Clinical Significance
1	βThal trait/minor	Microcytosis, mild anemia
2	β Thal Major (Cooley's Anemia)	TI - moderate anemia, not transfusion-dependent; TM - transfusion dependent

Thalassemia and Iron Overload

- <u>Complication</u>
 - − Iron overload \rightarrow organ damage
- Mechanism for Development of Iron Overload
 - 1. Blood transfusion
 - Blood transfusions (every 2-4 weeks for TM)
 - 2. Increased absorption of dietary iron due to ineffective erythropoiesis
- <u>Treatment</u>
 - Iron chelation therapy
 - Deferoxamine (standard therapy given overnight through a needle/pump under the skin)
 - Deferasirox (daily pill)

Life Expectancy - Thalassemia

Therapy	Life expectancy
No regular transfusion	<5 years
Regular transfusion+ no chelation	10-15 years
Regular transfusions + desferrioxamine (DFO) chelation – Poor adherence	15-25 years
Regular transfusions + (DFO) chelation – Good adherence	At least 50 years
Regular transfusions + diverse chelation modalities [DFO, deferiprone (DFP), deferasirox (DFX), combination DFO and DFP] and improved monitoring of liver and myocardial iron content by magnetic resonance imaging	> 50 years

Telfer, P. (2009). Update on survival in thalassemia major. Hemoglobin, 33 Suppl 1, S76-80. doi:10.3109/03630260903347336

Mechanisms of iron overload and which thalassemia patients are at risk

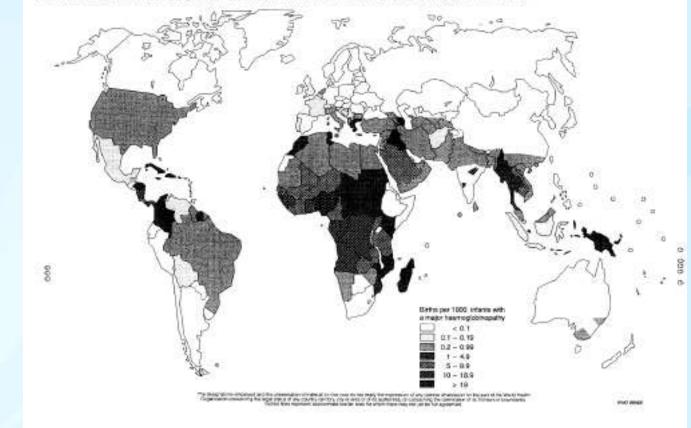
Transfused

- Thalassemia Major
 - When patients are transfused (e.g. b-thal major)
 - Accumulation is doubled compared to Thal intermedia

Non-transfused Thalassemia

- Thalassemia Intermedia
 - Rate of iron loading from The GI tract is 3-4 times greater than normal
 - Results in an increased iron burden between 2-5g per year
 - May need chelation as they get older

Mechanisms of iron overload and which thalassemia patients are at risk


Non-transfused

- Thalassemia Minor /Carriers
 - There are very few reports in the literature and studies present conflicting results
 - Evidence in total suggests that carriers are not at higher risk of iron-overload from dietary iron unless certain circumstances exist
 - Associated with coincidental HFE and other hemochromatosis causing gene mutations
 - Inappropriate therapy with very high levels of iron

Who Does Sickle Cell and Thalassemia Affect?

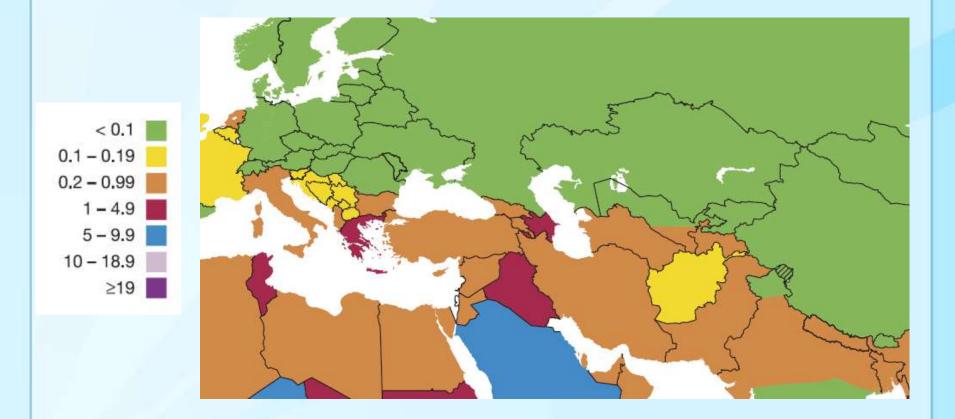
Figure 7

Global distribution of haemoglobin disorders, in terms of births of affected infants per 1000 births

Data from: Control of Hereditary Diseases. WHO Technical Report Series 865. WHO, Geneva, Switzerland.

Distribution of β **-Thalassemia Carriers (CEE/CIS)**

Country	% with Thal Trait	Reference
Albania	8.4	Baghernajad-S L, 2009
Armenian	1-2	Kuliev AM, 1994
Azerbaijan	>6 (0-20)	Kuliev AM, 1994
Bosnia	1.5	Efremov GD,1992
Bulgaria	2.5 (0.5-19.9)	Petkov GH 2007
Croatia (Dalmation Coast)	0.8 (6.9)	Efremov GD, 1992
Georgia	Up to 3	Kuliev AM, 1994



Distribution of β **-Thalassemia Carriers (CEE/CIS)**

Country	% with Thal Trait	Reference
Kosovo	2.0	Efremov GD, 1992
Macedonia	2.6 (1%-10%)	Efremov GD, 2007
Montenegro	1.9	Efremov GD, 1992
Romania	0.5%	Talmaci R, 2004
Serbia	1.8	Efremov GD,1992
Tajikistan	Estimated 10%	Baranov VS, 1993
Turkey (Adiyaman)	1.91	Genc A, 2012
Turkey (Konya)	2.0	Guler, E, 2007
Turkey	1.66 (1 -13)	Cavdar AO, 1971
Turkey	3.9	Koçak R, 1995
Turkmenistan	Estimated 10%	Baranov VS, 1993
Uzbekistan	Estimated 10%	Baranov VS,1993

Births with Pathological Hemoglobin Disorders per 1,000 Live Births (CEE/CIS)

Data from: Control of Hereditary Diseases. WHO Technical Report Series 865. WHO, Geneva, Switzerland. Map reformatted in: March of Dimes Global Report on Birth Defects – The Hidden Toll of Dying and Disabled Children

Conclusions

- Among those with thalassemia, evidence suggests that only thalassemia major and intermedia are at risk of secondary iron overload
- Prevalence of clinically significant (Major and Intermedia) thalassemia is low in CEE/CIS
- Early identification and appropriate clinical management should address risk of iron overload in persons with thalassemia major and intermedia

Potential Recommendations

In populations with a high prevalence of thalassemias and thalassemia traits

- Early identification (screening for hemoglobinopathies) to identify persons with thalassemia major and intermedia
- Regular monitoring of individuals for iron overload throughout lifespan if they have thalassemia
- Education of patients thalassemia major and intermedia to avoid iron containing supplements and iron-rich foods
- Population monitoring (public health surveillance) for iron deficiency AND for possible iron overload to assess effect of any program

Thank You

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333 Telephone, 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348 E-mail: cdcinfo@cdc.gov Web: www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

National Center on Birth Defects and Developmental Disabilities

Reference List

- Baghernajad-Salehi, Leila, Maria Rosaria D'Apice, Anila Babameto-Laku, Michela Biancolella, Anila Mitre, Silvia Russo, Nicola Di Daniele, Federica Sangiuolo, Vahe Mokini, and Giuseppe Novelli. 2009. "A pilot beta-thalassaemia screening program in the Albanian population for a health planning program." Acta haematologica 121 (4) (January): 234-8.
- Baranov, V. S. (1993). Molecular diagnosis of some common genetic diseases in Russia and the former USSR: present and future. *Journal of medical genetics*, 30(2), 141-6
- Cavdar AO, Arcasoy A. The incidence of beta-thalassemia and abnormal hemoglobins in Turkey. Acta Hematol. 1971;45:312–318.
- Efremov, Georgi D. 1992. "Hemoglobinopathies on Yugoslavia: An Update." Hemoglobin 16 (6): 531-544.
- Efremov, Georgi D. 2007. "Thalassemias and other hemoglobinopathies in the Republic of Macedonia." *Hemoglobin* 31 (1) (January): 1-15.
- Efremov, Georgi D. 1992. "Hemoglobinopathies on Yugoslavia: An Update." *Hemoglobin* 16 (6): 531-544.
- Genc, Ahmet, Deniz Tastemir Korkmaz, Mehmet Buyukleyla, and Murat Celiker. 2012. "Prevalence and Molecular Analysis of β-Thalassemia in Adiyaman, Turkey." Hemoglobin 36 (2): 131-138.
- Guler, Ekrem, and Mehmet Karacan. 2007. "Prevalence of beta-thalassemia and sickle cell and sickle cell anemia thrait in premarital screeening in Honya Urban area Turkey." Pediatric hematology and oncology 29 (11): 783-785.
- Koçak, R, Z N Alparslan, G Ağridağ, F Başlamisli, P D Aksungur, and S Koltaş. 1995. "The frequency of anaemia, iron deficiency, hemoglobin S and beta thalassemia in the south of Turkey." European journal of epidemiology 11 (2) (April): 181-4.
- Kuliev, A. M., Rasulov, I. M., Dadasheva, T., Schwarz, E. I., Rosatelli, C., Saba, L., Meloni, A., et al. (1994). Thalassaemia in Azerbaijan. *Journal of medical genetics*, 31(3), 209-12.

Reference List

- Fleming, Robert E, and Prem Ponka. 2012. "Iron overload in human disease." The New England journal of medicine 366 (4) (January 26): 348-59.
- Beutler, Ernest, a Victor Hoffbrand, and James D Cook. 2003. "Iron deficiency and overload." *Hematology* (January): 40-61. http://www.ncbi.nlm.nih.gov/pubmed/14633776.
- Data from: Control of Hereditary Diseases. WHO Technical Report Series 865. WHO, Geneva, Switzerland.
- Telfer, P. (2009). Update on survival in thalassemia major. *Hemoglobin*, 33 Suppl 1, S76-80.