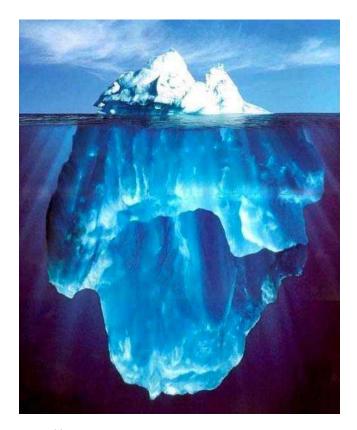
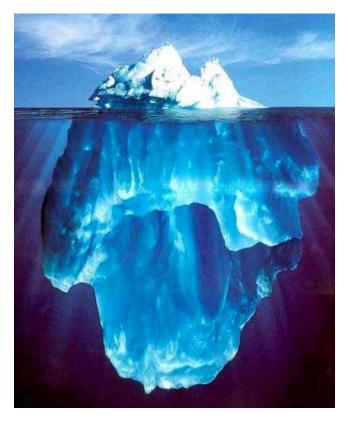


Micronutrient Malnutrition and Effective Interventions: The Global Picture


Nutrients

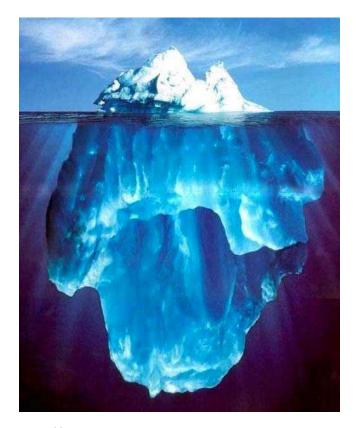

Also known as Hidden Hunger

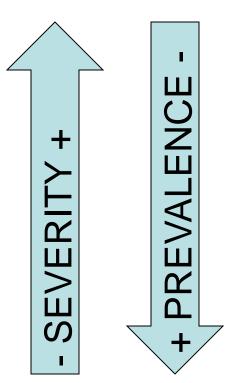
www.blogspot.com

Also known as Hidden Hunger

Corneal ulceration

www.motherandchildnutrition.org


Night blindness


www.steadyhealth.com

Also known as Hidden Hunger

Corneal ulceration or xerosis (1.7%)

www.motherandchildnutrition.org

Night blindness (38.4%)

www.steadyhealth.com

Nutrients	Global Burden of Disease ¹	Lancet ²	Food fortification ^{3*}	VMNIS ⁴
Folate		X	X	
Iodine		X	X	X
Iron [anemia]	X	X	X	X
Vitamin A	X	X	X	X
Vitamin B12		X	X	
Zinc		X	X	
*Others	Vitamins B1,	B2, B3, B6, C, D), Calcium, Selei	nium, Fluoride

¹WHO 2004. Global Burden of Disease. ²Lancet 2008. Maternal and Child Undernutrition. ³WHO/FAO 2006. Guidelines on Food Fortification with Micronutrients. ⁴WHO. Vitamin and Mineral Nutrition Information System.

Micronutrient Malnutrition: Folate

Physiological functions:

- "Essential for DNA biosynthesis
- Donates methyl (methylation) to lipids, hormones, DNA and proteins"

Consequences of deficiency:

- Anemia
- Neural tube defects (NTDs)

Consequences of insufficiency:

Neural tube defects

www.media.rbi.com.au

Folate Sufficiency

"Has a protective role against first occurrence and recurrence of NTDs"

WHO 2004. Vitamin and mineral requirements in human nutrition.

IOM 1998. Dietary Reference Intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline.

Folic Acid Working Group 2010. Fortification of flour with folic acid.

Daly 1995. Folate levels and neural tube defects.

McNulty 2008. Intake and status of folate and related B-vitamins.

Micronutrient Malnutrition: Folate

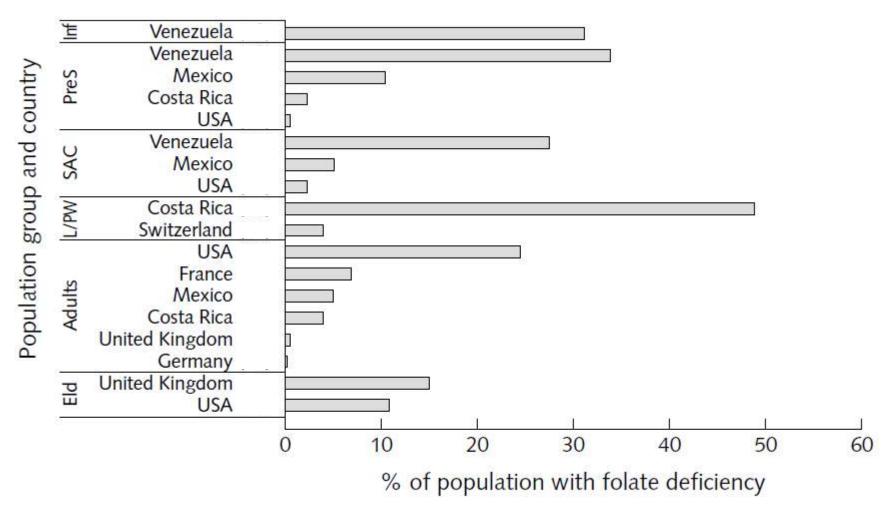
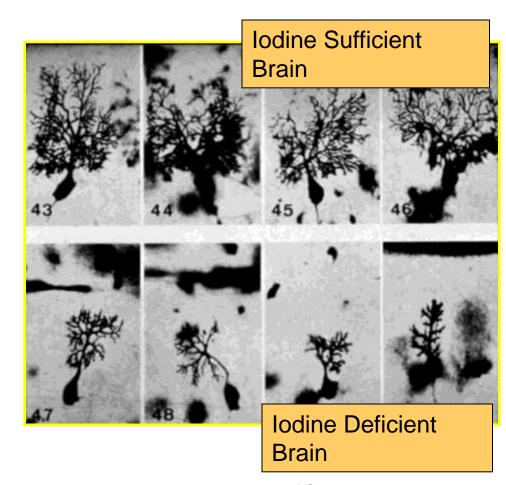


FIG. 3. Prevalence of folate deficiency in countries with nationally representative data.

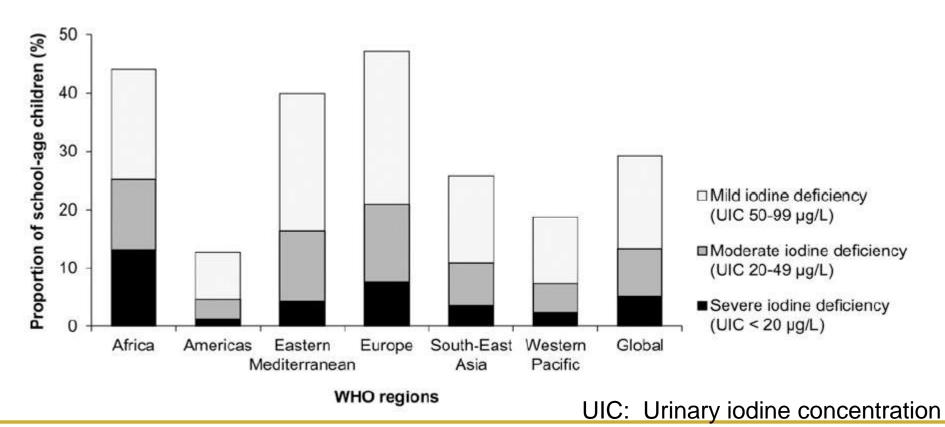


Micronutrient Malnutrition: Iodine

Thyroid Hormones

- "Play major role in growth & development of brain and central nervous system
- Control several metabolic processes"

Iodine Deficiency
The greatest cause of preventable brain damage in childhood



Images courtesy of Glen Maberly

Micronutrient Malnutrition: Iodine

Proportion of School-age Children Estimated to be At Risk for Mild, Moderate and Severe Iodine Deficiency, by WHO Region, 2011

Micronutrient Malnutrition: Iron

Physiological functions:

- "Carries oxygen from the lung to tissues
- Transports electrons within cells
- Part of enzyme systems in various tissues"

Consequences of deficiency:

- Decreased hemoglobin production
- Impaired delivery of oxygen to tissues (anemia)
- Reduced cognitive development
- Reduced work capacity

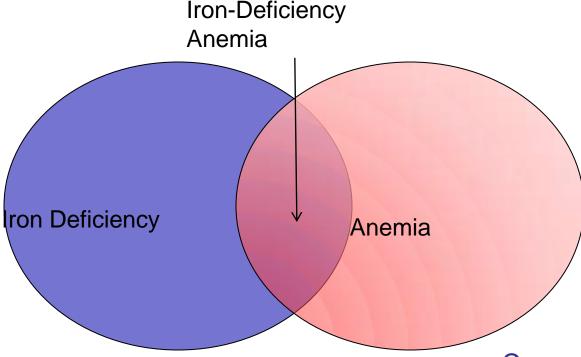
Iron Deficiency

The most common nutritional deficiency in the world

Micronutrient Malnutrition: Iron

Anemia used as a proxy indicator for iron status

Table 3.3 Anaemia prevalence and number of individuals affected in preschool-age children, pregnant women, and non-pregnant women in each WHO region

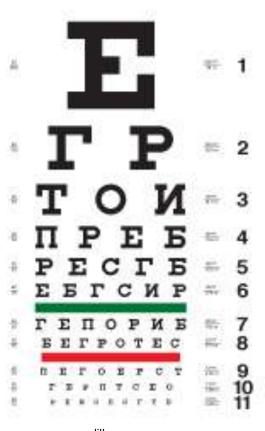

WHO region	Preschool-age children ^a		Pregnant women		Non-pregnant women	
	Prevalence (%)	# affected (millions)	Prevalence (%)	# affected (millions)	Prevalence (%)	# affected (millions)
Africa	67.6	83.5	57.1	17.2	47.5	69.9
Americas	29.3	23.1	24.1	3.9	17.8	39.0
South-East Asia	65.5	115.3	48.2	18.1	45.7	182.0
Europe	21.7	11.1	25.1	2.6	19.0	40.8
Eastern Mediterranean	46.7	0.8	44.2	7.1	32.4	39.8
Western Pacific	23.1	27.4	30.7	7.6	21.5	97.0
Global	47.4	293.1	41.8	56.4	30.2	468.4

Population subgroups: Preschool-age children (0.00-4.99 yrs); Pregnant women (no age range defined); Non-pregnant women (15.00-49.99 yrs).

^{95%} Confidence Intervals.

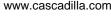
Micronutrient Malnutrition: Iron

Causes:


- Deficient iron intake
- Excessive iron loss

Causes:

- Deficiency of iron, vitamin B12, folate, vitamin A
- Hemoglobinopathies
- Infections



Micronutrient Malnutrition: Vitamin A

Physiological functions:

- "Needed for normal functioning of the visual system
- Required for growth and development
- Used in maintenance of epithelial cellular integrity, immune function, and reproduction"

Micronutrient Malnutrition: Vitamin A

Consequences of deficiency:

- Xerophthalmia
- Anemia
- Worsen infection
- Increase mortality

Table 1	Classification	of xerophthalmia

XN	Night blindness
X1A	Conjunctival xerosis
X1B	Bitot's spot
X2	Corneal xerosis
ХЗА	Corneal ulceration/keratomalacia (< 1/3 corneal surface)
X3B	Corneal ulceration/keratomalacia ($\geq 1/3$ corneal surface)
XS	Corneal scar
XF	Xerophthalmic fundus

Vitamin A Deficiency

One of the most important causes of preventable childhood blindness Major contributor to morbidity and mortality from infections

Micronutrient Malnutrition: Vitamin A

Table 11 Prevalence of serum retinol < 0.70 µmol/l and number of individuals affected among preschool-age children and pregnant women in populations of countries at risk of vitamin A deficiency 1995–2005, globally and by WHO region

WHO region	Preschool-age children*		Pregnant women	
	Prevalence ^b (%)	# affected (millions)	Prevalence (%)	# affected (millions)
Africa	44.4	56.4	13.5	4.18
Americas	15.6	8.68	2.0	0.23
South-East Asia	49.9	91.5	17.3	6.69
Europe	19.7	5.81	11.6	0.72
Eastern Mediterranean	20.4	13.2	16.1	2.42
Western Pacific	12.9	14.3	21.5	4.90
Global	33.3	190	15.3	19.1

Population subgroups: Preschool-age children (<5 years); Pregnant women (no age range defined).

^{95%} Confidence Intervals.

Numerator and denominator excludes countries with a 2005 GDP ≥US\$ 15 000.

Micronutrient Malnutrition: Vitamin B12

Cobalamin

Physiological function:

"As a cofactor for the enzymes methionine synthase and L-methylmalonyl-CoA mutase"

Consequences of deficiency:

- Anemia
- Neurological complications

Vitamin B12
Essential for normal blood formation and neurological function

Micronutrient Malnutrition: Vitamin B12

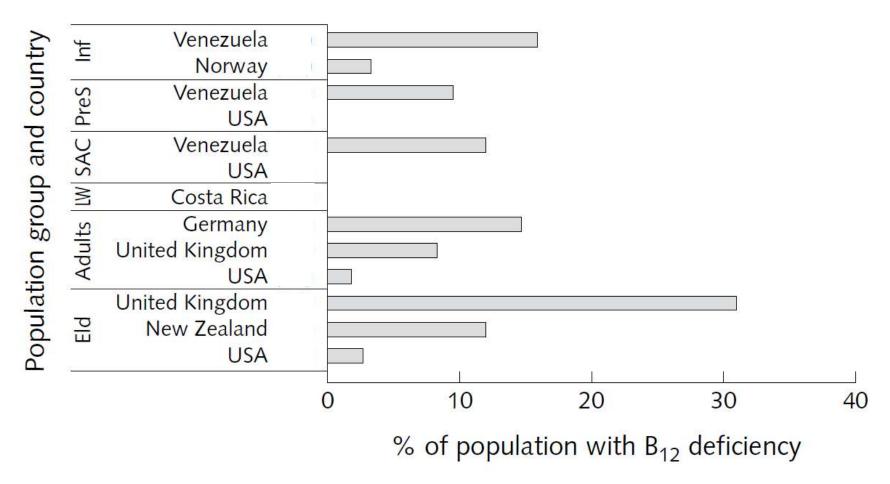


FIG. 4. Prevalence of vitamin B_{12} deficiency in countries with nationally representative data.

Micronutrient Malnutrition: Zinc

Physiological function:

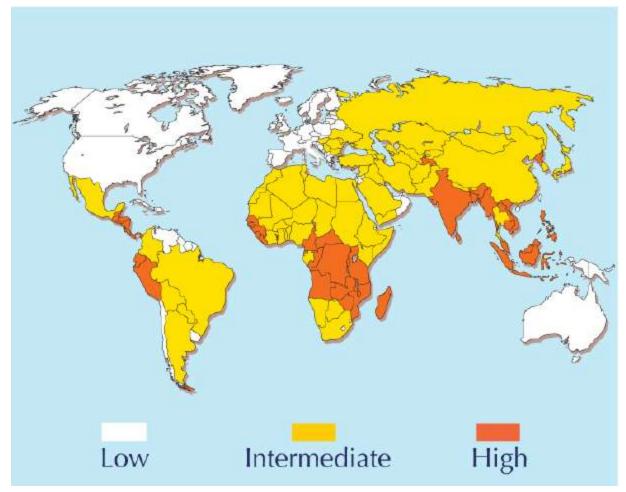
"Essential component of a large number (>300) of enzymes participating in the synthesis and degradation of carbohydrates, lipids, proteins, and nucleic acids as well as in the metabolism of other micronutrients"

www.wordpress.com

Micronutrient Malnutrition: Zinc

Consequences of deficiency:

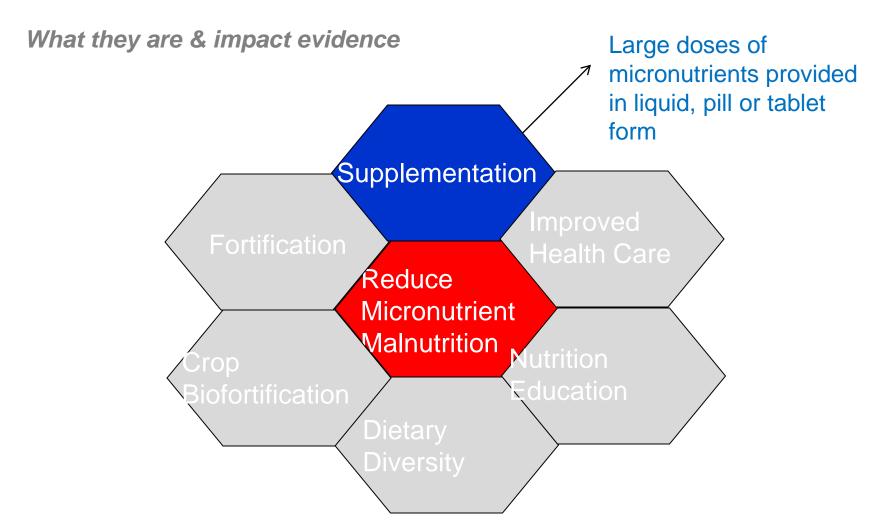
Severe Zinc Deficiency	Mild Zinc Deficiency
Growth retardation	Growth retardation
Delayed sexual & bone maturation	
Skin lesions	
Diarrhea	
Alopecia	
Impaired appetite	
Impaired immunity	Impaired immunity
Behavioral changes	

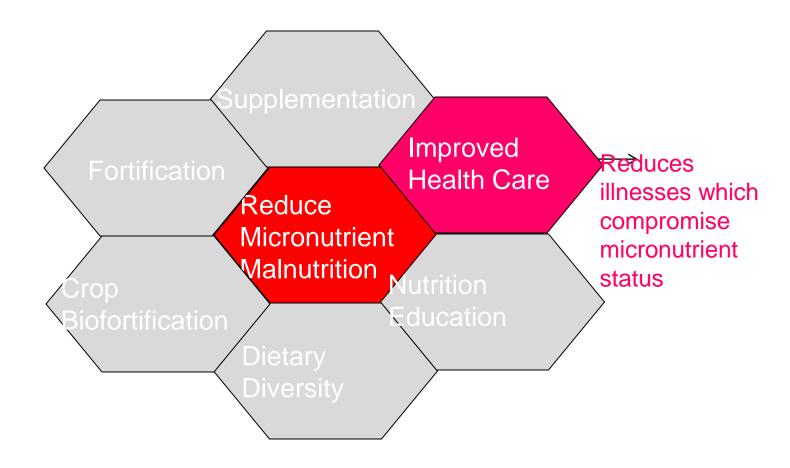

Zinc Deficiency

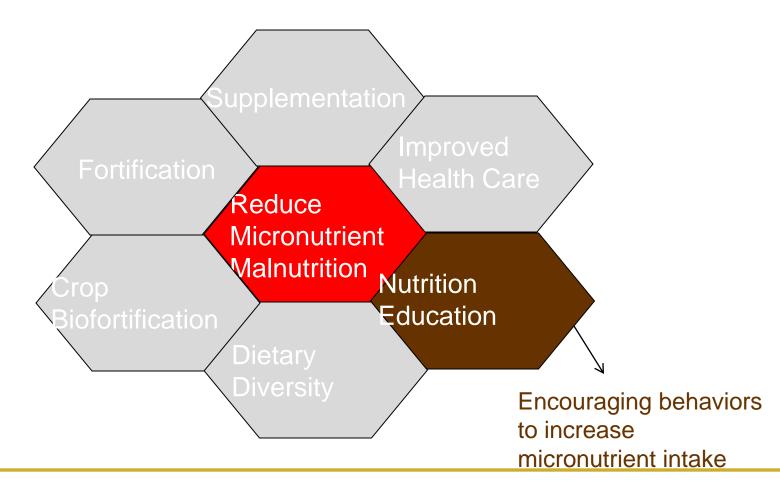
Increases morbidity and mortality and delays growth

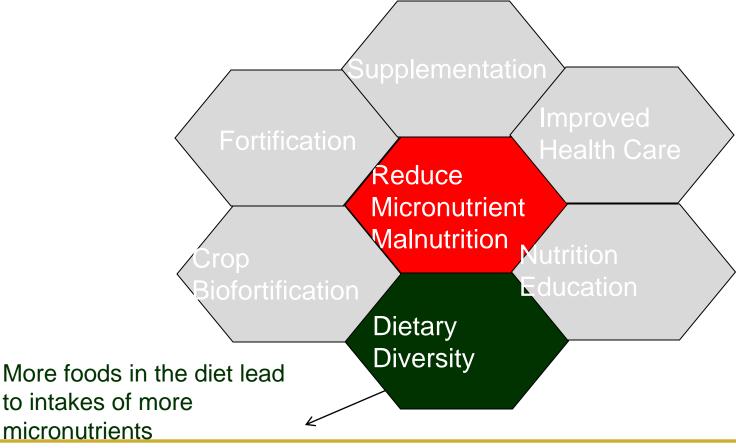
Micronutrient Malnutrition: Zinc

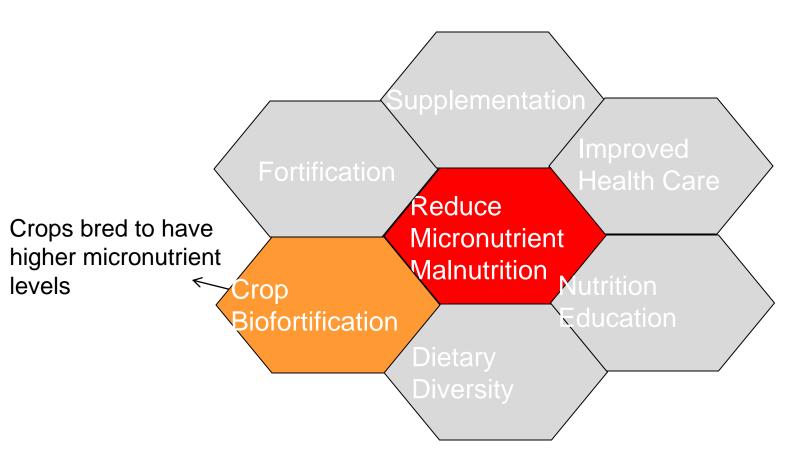
Countries' Risk for Zinc Deficiency

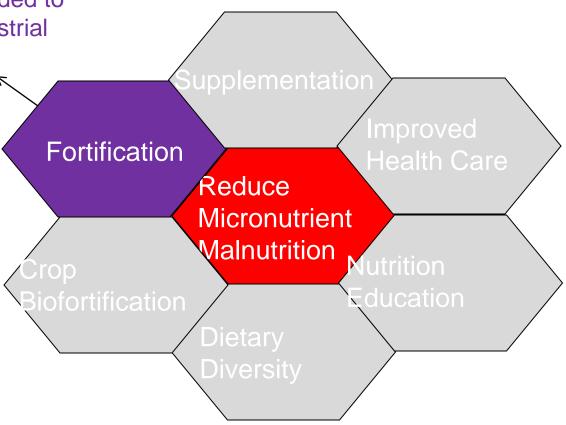



Multiple and complementary

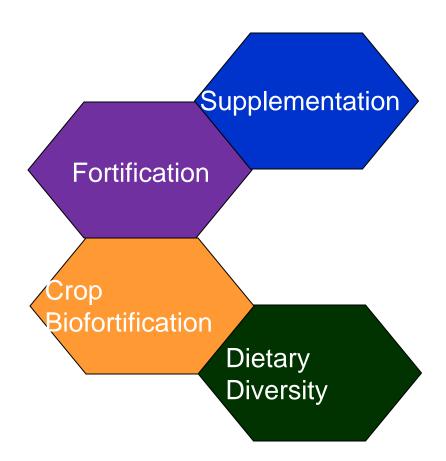


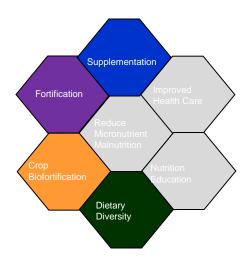






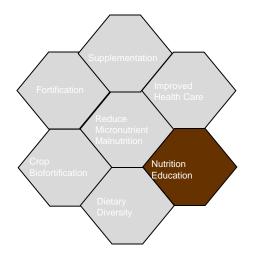
What they are & impact evidence


Micronutrients added to foods during industrial processing



How they work

Nutritious options available for consumption



How they work

Nutritious options available for consumption

People choose to consume more nutritious options

micronutrients

How they work

Nutritious options available for consumption

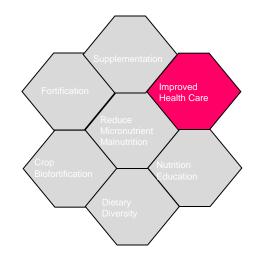
> People choose to consume more nutritious options

Supplementation **Fortification** People eat more **Nutrition** Education Biofortification Dietary

Diversity

Supplementation

Education


Fortification

Crop Biofortification

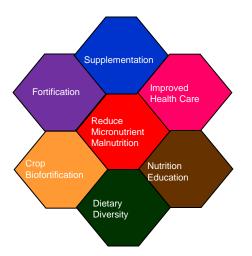
How they work

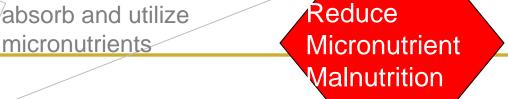
Nutritious options available for consumption

People choose to consume more nutritious options

People eat more micronutrients

Body can better absorb and utilize micronutrients


How they work


Nutritious options available for consumption

> People choose to consume more nutritious options

> > Reople eat more nutrients

> > > Body can better absorb and utilize

Conclusions

- Micronutrient malnutrition negatively affects the health, development and productivity of millions
- Successful interventions exist to reduce micronutrient malnutrition
- For countries to consider:
 - What are the key nutrient deficiencies faced?
 - What interventions, alone or in combination, can best address these problems?

For More Information

Helena Pachón
FFI Senior Nutrition Scientist
Tel +1 404 727 9194
Email helena.pachon@emory.edu

Flour Fortification Initiative online:

FFInetwork.org

Facebook.com/ffinetwork

Twitter.com/ffinetwork

LinkedIn.com

References (1)

Andersson 2012. Global Iodine Status in 2011 and Trends over the Past Decade. http://jn.nutrition.org/content/142/4/744.abstract?sid=0414f6d6-cbfc-4467-8ba7-b19984eab75c

Bayani 2000. Reducing micronutrient malnutrition: Policies, programmes, issues, and prospects—dietary diversification through food production and nutrition education. http://www.ingentaconnect.com/content/nsinf/fnb/2000/0000021/00000004/art00034

Bhutta 2008. What works? Interventions for maternal and child undernutrition and survival. http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(07)61693-6/abstract

Copenhagen Consensus 2008. http://www.copenhagenconsensus.com/Projects/Copenhagen%20Consensus%202008/Outcome.aspx

Daly et al. 1995. Folate levels and neural tube defects. http://jama.jamanetwork.com/article.aspx?volume=274&issue=21&page=1698

Folic Acid Working Group 2010. Fortification of flour with folic acid. http://www.foodandnutritionbulletin.org/downloads/FNB_v31n1_suppl_web.pdf

Haas 2001. Iron Deficiency and Reduced Work Capacity. http://jn.nutrition.org/content/131/2/676S.full.pdf+html

IOM 1998. Dietary Reference Intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. http://www.nap.edu/catalog.php?record_id=6015

IZiNCG. Advocacy brochure. http://www.izincg.org/publications/files/IZiNCG_AdvocacyStatement_A4_final_English.pdf

Lancet 2008. Maternal and Child Undernutrition. http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(07)61690-0/abstract

McLean et al. 2008. Review of the magnitude of folate and vitamin B12 deficiencies worldwide. http://naldc.nal.usda.gov/download/44471/PDF

McNulty & Scott 2008. Intake and status of folate and related B-vitamins: considerations and challenges in achieving optimal status. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=1928228

Mele 1991. Nutritional and household risk factors for xerophthalmia in Aceh, Indonesia. http://www.ajcn.org/content/53/6/1460.full.pdf+html

References (2)

Sight and Life 2001. Manual on Vitamin A Deficiency Disorders (VADD). http://www.sightandlife.org/fileadmin/data/Books/Manual_on_Vitamin_A_%28vadd%29_e.pdf

Sommer 2006. Nutritional Blindness: Xerophthalmia and Keratomalacia. http://www.oculist.net/downaton502/prof/ebook/duanes/pages/v5/v5c059.html

Smith & Refsum 2009. Vitamin B-12 and cognition in the elderly. http://www.ajcn.org/content/89/2/707S.abstract?sid=05a5747f-b8b3-4f95-8764-7f88ba439d16

Stanbury. The damaged brain of iodine deficiency. http://books.google.com/books/about/The_damaged_brain_of_iodine_deficiency.html?id=xs5LAQAAIAAJ

Tontisirin 2002. Food-based strategies to meet the challenges of micronutrient malnutrition in the developing world. http://journals.cambridge.org/download.php?file=%2FPNS%2FPNS61 02%2FS0029665102000733a.pdf&code=0a251487fa774574968140bc4db80943

UN. Millenium Development Goals. http://www.un.org/millenniumgoals/

Walker 2007. Child development: risk factors for adverse outcomes in developing countries. http://www.sciencedirect.com/science/article/pii/S0140673607600762

WHO. Vitamin and Mineral Nutrition Information System. http://www.who.int/vmnis/en/

WHO 2004. Global Burden of Disease. http://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/index.html

WHO 2004. Iodine status worldwide. http://whqlibdoc.who.int/publications/2004/9241592001.pdf

WHO 2004. Vitamin and mineral requirements in human nutrition. http://whqlibdoc.who.int/publications/2004/9241546123.pdf

WHO/FAO 2006. Guidelines on Food Fortification with Micronutrients. http://www.who.int/nutrition/publications/guide_food_fortification_micronutrients.pdf

WHO 2008. Worldwide prevalence of anaemia 1993-2005. http://www.who.int/vmnis/publications/anaemia_prevalence/en/index.html

WHO 2009. Global prevalence of vitamin A deficiency in populations at risk 1995-2005. http://www.who.int/nutrition/publications/micronutrients/vitamin_a_deficiency/9789241598019/en/index.html

