Public and Private Sector Dynamics in Scaling Up Rice Fortification: The Colombian Experience and its Lessons

Becky L Tsang¹, Ralfh Moreno², Nazila Dabestani², Helena Pachón¹, Rebecca Spohrer³, Peiman Milani²

¹ Food Fortification Initiative, Atlanta, USA
² PATH, Seattle, USA
³ Global Alliance for Improve Nutrition, Geneva, Switzerland

Accepted for publication in Food and Nutrition Bulletin
Disclaimer

Nazila Dabestani, Peiman Milani and Ralph Moreno (at time of work) were affiliated with PATH, an international nonprofit that holds the license to Ultra Rice®, a technology to produce fortified rice.
Main messages

1. Rice is a suitable food to massively fortify to increase micronutrient intakes in Colombia
2. ~35% of Colombia’s rice is voluntarily fortified with a spraying technology with unknown nutrient retention, stability & effectiveness
3. Several factors keep millers from adopting proven rice fortification technology
4. Costa Rican experience suggests that mandatory fortification can attain universal coverage and public health impact
5. Public sector can strengthen the public health impact of rice fortification through several actions
Objectives

1. Describe the Colombian experience with rice fortification to date
2. Discuss rice-fortification efforts in other countries
3. Offer recommendations to Colombian policy-makers in rice fortification that may also be adapted to other contexts
Methodology

September-October 2013, July 2015

• Interviews
• Observations
• Document reviews
Rice fortification: introduction
Rice flour and kernels can be fortified

Rice Flour

Rice Kernels

www.holistichealthherbalist.com

www.nutridieta.com
Rice-kernel fortification: different technologies

- Extrusion (cold, hot)
- Coating
- Dusting

Evidence that rice fortified with these technologies delivers nutrients to consumers.
Extrusion technology

English: https://www.youtube.com/watch?v=FvbEDsiqz7M
Extrusion technology

STEP 1: Create fortified “kernels”

STEP 2: Blend fortified “kernels” with milled rice

Courtesy Moench-Pfanner, 2015
Coating technology

STEP 1: Create fortified kernels

Milled rice + Coating: Vitamin & Minerals → Fortified kernels

STEP 2: Blend fortified kernels with milled rice

Fortified kernels + Milled rice → Fortified rice

Courtesy Codling & Tsang 2015
Dusting technology

- All rice grains dusted with a fortificant mix
- Limited nutrient protection
- Sedimentation risk
- Frequently done in USA
- Due to nutrient loss, not suitable in countries where rice is washed or where excess cooking water is discarded

DSM research

Courtesy Montgomery 2014
Rice-fortification technology used in Colombia: spraying

• Unique to the country
• Micronutrients are present in a liquid solution that is sprayed at high pressure
• Waxes or gums may be used in the liquid solution to improve adherence to the surface of the grain
• Spray is applied to all rice
Summary

• There are three globally recognized rice-fortification technologies

• Two are recommended: extrusion & coating

• Colombia uses a unique technology: spraying
Objective 1: Describe the Colombian experience with rice fortification to date
Rice is a suitable fortification vehicle

- High availability
- Widely consumed across country
- Consolidated industry
Rice fortification timeline

2002

- *Arroz Roa* begins fortification: spraying
- *Unión de Arroceros* begins fortification: cold-extrusion
- Multi-sectoral discussions begin to introduce fortified rice in the country to improve public health

2003

- Due to a drop in sales and poor consumer response, *Unión de Arroceros* halts fortification of its brands
<table>
<thead>
<tr>
<th>Year</th>
<th>Event Description</th>
</tr>
</thead>
</table>
| 2011 | Government discussions to mandate rice fortification begin and stall again.
 | *Florhuila* begins fortification: spraying |
| 2012 | Imported rice kernels manufactured with hot-extrusion technology are considered by a leading miller but not adopted due to cost concerns. |
| 2013 | *Diana* and *Caribe* begin fortification: spraying |
| 2014 | Owing to competitive pressures, *Unión de Arroceros* begins fortification again: spraying |
| 2015 | ~35% of the country’s rice is voluntarily fortified using spraying |
Themes that emerged

- Motivations to begin rice fortification
- Rice fortification technology unique to Colombia
- Costs to fortify rice
- Efforts to legislate mandatory fortification
Motivations to begin rice fortification

Early 2000s: desire of Colombian rice millers to differentiate their products from those of their domestic competitors
Unique rice-fortification technology used in Colombia: spraying

- No published studies conducted by any institution (private, government, academic, or other)
- Unknown: nutrient content and stability of the fortified rice after it is rinsed and cooked
- Unknown: effectiveness of fortified rice in increasing micronutrient intake in consumers
Colombian fortification technology

Challenges to spraying technology

1. Fortification not homogeneous
2. Micronutrient losses during washing & cooking
3. Occasional formation of mold
Colombian fortification technology

Challenges to introducing extrusion or coating technology

- Mill experience with sales decline after introducing cold-extruded fortified rice
- Mill reluctance to invest capital & increased recurring costs for blending fortified kernels
Cost of fortification

<table>
<thead>
<tr>
<th>Technology</th>
<th>Blend ratio</th>
<th>Increase in rice price due to fortification, per kg (%)</th>
<th>Incremental cost of extruded and coated fortification technologies compared to spraying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot extrusion</td>
<td>1%</td>
<td>1.50%</td>
<td>6.6-fold</td>
</tr>
<tr>
<td></td>
<td>0.5%</td>
<td>0.75%</td>
<td>3.3-fold</td>
</tr>
<tr>
<td>Coating</td>
<td>1%</td>
<td>1.13%</td>
<td>5.0-fold</td>
</tr>
<tr>
<td></td>
<td>0.5%</td>
<td>0.57%</td>
<td>2.5-fold</td>
</tr>
<tr>
<td>Spraying</td>
<td>Not applicable</td>
<td>0.23%-0.26%</td>
<td>--</td>
</tr>
</tbody>
</table>
Cost of fortification

Costs with introducing extrusion or coating technology

For extrusion or coating: capital cost to purchase blending equipment

Small miller concerns: access to capital to purchase fortified kernels, further concentration of rice industry
Efforts to legislate mandatory fortification

As of July 2015: no mandatory rice fortification legislation in Colombia

<table>
<thead>
<tr>
<th>Millers</th>
<th>Draft decrees and standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initially supported mandate, assuming it could stem influx of illegally imported rice</td>
<td>Draft decrees lacked specific language to identify micronutrients, amounts, appropriate technologies</td>
</tr>
<tr>
<td>Changed position, claiming insufficient government capacity to control illegal rice trade across borders</td>
<td>No standards developed: micronutrients and amounts used vary by brand, unproven technology used</td>
</tr>
</tbody>
</table>

Food Fortification Initiative

PATH

gain

Global Alliance for Improved Nutrition
Summary

• Colombian millers have over a decade of experience with the spraying technology

• ~35% of Colombia’s rice is voluntarily fortified with a spraying technology with unknown nutrient retention, stability & effectiveness

• Several factors keep millers from adopting proven rice fortification technology (extrusion, coating)
Objective 2: Discuss rice-fortification efforts in other countries
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Colombia</th>
<th>Brazil</th>
<th>Costa Rica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legislation</td>
<td>Voluntary</td>
<td>Voluntary</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Public-sector engagement</td>
<td>X</td>
<td>No</td>
<td>XXX</td>
</tr>
<tr>
<td>Private-sector led</td>
<td>XXX</td>
<td>XXX</td>
<td>No</td>
</tr>
<tr>
<td>Coverage</td>
<td>~35%</td>
<td>~4%</td>
<td>~100%</td>
</tr>
<tr>
<td>Impact on public health</td>
<td>?</td>
<td>?</td>
<td>XXX</td>
</tr>
</tbody>
</table>
Summary

• Costa Rican experience suggests that mandatory fortification can attain universal coverage and public health impact

• Colombia and Brazil experiences suggest that private sector driven, voluntary fortification does not achieve high coverage and impact
Objective 3: Offer recommendations to Colombian policy-makers in rice fortification
Recommendations

- Investigate spray technology for rinse resistance and nutrient retention during cooking
- Develop standards for rice fortification
- Consider a mandate with special consideration for small mills
- Strengthen capacity for enforcing food and border regulations
- Expand access to fortified rice by vulnerable populations through social safety nets
Investigate spraying technology for rinse resistance & nutrient retention during cooking

Assessment by government laboratory or reputable third-party institution

If spraying technology is ineffective: substantially enhance it or replace it with extrusion or coating
Develop standards for rice fortification

Currently, rice producers add types and amounts of micronutrients at will for marketing purposes.

Setting standards will ensure that rice fortification is safe and beneficial to consumers.

To establish rice standards, analysis of the estimated levels of micronutrients contributed by both fortified wheat flour and rice is necessary.
Consider a mandate with special consideration for small mills

If mandatory fortification is established, explore options to enhance small mills’ ability to fortify.

Government should weigh the resources required to regulate and monitor implementation by mills, and small mills in particular.

To reach populations that depend on rice from small mills it may be necessary to implement other public health strategies to improve micronutrient status.
Strengthen capacity for enforcing food & border regulations

Improved enforcement and policies to deal with rice smuggling would improve the enabling environment for greater investment by local millers in rice fortification
Expand access to fortified rice by vulnerable populations through social safety nets

Vulnerable populations in social safety net programs could benefit from consuming fortified rice

Social safety net programs can make fortified rice a requirement in their procurement

Large-volume purchases could give the national government added leverage in implementing fortification policies and standards
Summary

• Public sector can strengthen the public health impact of rice fortification through several actions
Main messages

1. Rice is a suitable food to fortify to increase micronutrient intakes in Colombia
2. ~35% of Colombia’s rice is voluntarily fortified with a spraying technology with unknown nutrient retention, stability & effectiveness
3. Several factors keep millers from adopting proven rice fortification technology
4. Costa Rican experience suggests that mandatory fortification can attain universal coverage and public health impact
5. Public sector can strengthen the public health impact of rice fortification through several actions
Acknowledgements

• Interviewees
• Alvaro Ruiz
• Bill & Melinda Gates Foundation

The views expressed herein are solely those of the authors and do not necessarily reflect the views of the Foundation.
For more information

- Food Fortification Initiative
 - Becky Tsang: becky.tsang@ffinetwork.org
 - Peiman Milani, PATH, pmilani@path.org