Overview of Impact of Flour Fortification with Iron

Althea M Grant, PhD
Chief, Epidemiology and Surveillance Branch, Division of Blood Disorders, NCBDDDD, CDC

Ankara, Turkey
12 June 2012

The findings and conclusions in this presentation are those of the author and do not necessarily represent the views of the Centers for Disease Control and Prevention
• Overview of physiological functions of iron and consequences of iron deficiency
• Iron Fortification:
 • Forms of iron used, types of foods fortified, and amount of iron needed
• Impact of flour fortification with the iron
 • Countries that fortify wheat flour with iron
 • Impact of iron fortification on iron deficiency
Iron

- **Essential micronutrient**
 - Hemoglobin needed to carry oxygen through the blood
 - Cellular proteins
 - Myoglobin
 - Cytochromes – energy-producing redux reactions
 - Others proteins – DNA synthesis, cell division
 - Connective tissues, neurotransmitters, and immune system

- **Most contained in red blood cells and recycled**
- **No mechanism for excretion**
- **Loss only through blood loss or sloughing**
 - Normally lose 1 mg per day
 - Menstruation – 10 mg per cycle (more for heavy bleeders)
 - Blood donation 250mg
Iron Absorption

- Iron levels controlled by absorption
- Absorption is ~ 5-10% of dietary intake
- Heme iron - animal sources (hemoglobin, myoglobin)
 - Form best absorbed
 - Mechanism of absorption not well understood
- All other iron (nonheme)
 - Absorption is affected by:
 - Precipitation in pH >7.0
 - Tannins and phytates
 - Vitamin C

Iron Deficiency Anemia

- Leading cause of anemia
- Most prevalent nutritional deficiency in the world
 - affecting approximately 2 billion persons
- Effects
 - Delay normal infant motor function or mental function
 - During pregnancy can increase risk preterm births
 - Fatigue that impairs the ability to do physical work in adults
 - Iron deficiency may also affect memory or other mental function in teens
What Leads to Iron Deficiency Anemia?

<table>
<thead>
<tr>
<th>Increased Iron Needs</th>
<th>Decreased Iron Intake and Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rapid growth</td>
<td>1. Lack of heme iron sources in the diet (e.g., vegetarian diets)</td>
</tr>
<tr>
<td>2. Pregnancy</td>
<td>2. Low absorption</td>
</tr>
<tr>
<td>3. Blood loss</td>
<td>• Taking antacids or other medications</td>
</tr>
<tr>
<td>• Heavy menstrual periods</td>
<td></td>
</tr>
<tr>
<td>• Frequent blood donation</td>
<td></td>
</tr>
<tr>
<td>• Some stomach and intestinal conditions</td>
<td></td>
</tr>
<tr>
<td>(food sensitivity, hookworms)</td>
<td></td>
</tr>
</tbody>
</table>
Who is most at risk of iron deficiency anemia?

- **Young children**
 - 6 month to 3 yrs
 - Babies who were born early or small.
 - Babies given cow's milk before age 12 months.
 - Some breastfed babies
 - Formula-fed babies who do not get iron-fortified formulas.
 - Children aged 1–5 years who get more than 24 ounces of cow, goat, or soymilk per day.
 - Children who have special health needs, for example, children with chronic infections or restricted diets.

- **Pregnant women.**

- **Adolescent girls and women of childbearing**
 - Menstruation
How much dietary iron do we need?

Recommended Dietary Allowance (RDA) for iron by age and sex.

<table>
<thead>
<tr>
<th>Age/Group</th>
<th>Life Stage</th>
<th>Iron (mg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infants</td>
<td>0–6 months</td>
<td>0.27*</td>
</tr>
<tr>
<td></td>
<td>7–12 months</td>
<td>11</td>
</tr>
<tr>
<td>Children</td>
<td>1–3 years</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>4–8 years</td>
<td>10</td>
</tr>
<tr>
<td>Males</td>
<td>9–13 years</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>14–18 years</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>19 or over</td>
<td>8</td>
</tr>
<tr>
<td>Females</td>
<td>9–13 years</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>14–18 years</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>19–50 years</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>51 and over</td>
<td>8</td>
</tr>
<tr>
<td>Pregnant Women</td>
<td>14 and over</td>
<td>27</td>
</tr>
<tr>
<td>Lactating Women</td>
<td>14–18 years</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>19–30 years</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>31–50 years</td>
<td>9</td>
</tr>
</tbody>
</table>

Dietary Reference Intakes, Institute of Medicine, Food and Nutrition Board
Strategies to Reduce Iron Deficiency

- Iron supplementation with pharmacological doses
- Iron fortification of industrially manufactured food
- Dietary diversification to improve iron bioavailability
- Selective plant breeding or genetic engineering to increase the iron content or to reduce absorption inhibitors in dietary staples

Types of Food Fortified with Iron

- **Flour**
 - Wheat
 - Corn

- **Rice**

- **Seasoning Powder**

- **Salt**

- **Sugar**

- **Curry Powder**

- **Fish Sauce**

Daily fortification iron consumption required for a satisfactory impact (results from controlled field trials)

- Sodium iron EDTA: 4.6 mg
- Ferrous sulfate or ferrous fumarate: 7.1 mg
- Electrolytic iron (elemental iron): 10 mg
- Ferric pyrophosphate: 10 mg
- Reduced iron (elemental iron): no significant impact

When to Consider National or Regional Wheat Fortification with Iron

- Iron deficiency anemia > 5%

Goal:
- Decrease prevalence of iron deficiency < 10% and iron deficiency anemia < 5% by 2-3 years after start of fortification

Determining appropriate level of fortification to reduce iron deficiency

- The chemical form of the fortification iron being added
- The level of addition
- The vehicle consumption rate
Recommended Wheat Flour Fortification Levels Based on Trials

<table>
<thead>
<tr>
<th>Flour Consumption (g/day)</th>
<th>NaFeEDTA (ppm)</th>
<th>Ferrous sulfate or ferrous fumarate (ppm)</th>
<th>Electrolyte iron powder (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>300</td>
<td>15</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>150-300</td>
<td>20</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>75-149</td>
<td>40</td>
<td>60</td>
<td>Not recommended</td>
</tr>
<tr>
<td><75</td>
<td>40</td>
<td>60</td>
<td>Not recommended</td>
</tr>
</tbody>
</table>

Wheat Flour Fortification Status

May 2012: Fortifying with at least iron and/or folic acid

Mandatory wheat flour fortification
Effectiveness of Wheat Fortification Program

- Only 9 national programs could expect to have the desired nutritional impact
 - Millers do not follow Cuernavaca or WHO guidelines
 - Fortification with atomized and hydrogen-reduced elemental iron powders
 - Use of fortification levels that are too low based on consumption patterns

Summary and Recommendations

- Iron fortification is efficacious for reducing iron-deficiency (based on trials)
- In order for iron fortification to be effective
 - Using recommended iron compounds
 - Use adequate concentration based on consumption patterns
Thank You

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333
Telephone, 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348
E-mail: cdcinfo@cdc.gov Web: www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.